Skip to main content
Log in

Role of Quasi-Longitudinal and Quasi-Transverse Phonons in the Drag Thermopower of Potassium Crystals at Low Temperatures

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have analyzed the effect of elastic energy anisotropy on the electron–phonon drag and thermoelectric phenomena in potassium crystals. It is shown that focusing leads to drag thermopower anisotropy at low temperatures; when diffuse phonon scattering at the boundaries is the predominant relaxation mechanism, focusing leads to drag thermopower anisotropy. With increasing sample cross section, the competition of the boundary and bulk phonon relaxation mechanisms leads to a nonmonotonic variation of drag thermopower anisotropy: upon a transition from the Knudsen regime of the phonon gas flow, it first increases from 16% to 30%, and then vanishes upon a transition to bulk samples. We have studied the role of quasi-longitudinal and quasi-transverse phonons in the drag thermopower of potassium crystals at low temperatures. It is shown that the contribution of slow quasi-transverse phonons to the drag thermopower of bulk potassium crystals is an order of magnitude larger than the contribution of quasi-longitudinal phonons. For this reason, the isotropic medium model cannot provide a correct description of the electron–phonon drag in metals. The effect of inelastic energy anisotropy on the spectrum and of the phonon polarization vector must be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. D. K. C. MacDonald, W. B. Pearson, and I. M. Templeton, Proc. R. Soc. London, Ser. A 248, 107 (1958);

    Article  ADS  Google Scholar 

  2. Proc. R. Soc. London, Ser. A 256, 334 (1960).

  3. A. M. Guenault and D. K. C. MacDonald, Proc. R. Soc. London, Ser. A 264, 41 (1961).

    Article  ADS  Google Scholar 

  4. M. R. Stinson, R. Fletcher, and C. R. Leavens, Phys. Rev. B 20, 3970 (1979).

    Article  ADS  Google Scholar 

  5. R. Fletcher, Phys. Rev. B 36, 3042 (1987).

    Article  ADS  Google Scholar 

  6. F. J. Blatt, P. A. Schroeder, C. L. Foiles, and D. Greig, Thermoelectric Power of Metals (Plenum, New York, London, 1976).

    Book  Google Scholar 

  7. J. Ziman, Electrons and Phonons (Oxford, New York, 1960; Inostr. Liter., Moscow, 1962).

  8. I. M. Tsidil’kovskii, Thermomagnetic Effects in Semiconductors (Nauka, Moscow, 1960; Infosearch, London, 1962).

  9. A. I. Anselm, Introduction to Semiconductor Theory (Prentice-Hall, Englewood Cliffs, 1981; Nauka, Moscow, 1978).

  10. V. M. Askerov, Electron Transport Phenomena In Semiconductors (Nauka, Moscow, 1985; World Scientific, Singapore, 1994)

  11. A. K. McCurdy, H. J. Maris, and C. Erlbaum, Phys. Rev. B 2, 4077 (1970).

    Article  ADS  Google Scholar 

  12. H. J. Maris, J. Acoust. Soc. Am. 50, 812 (1971).

    Article  ADS  Google Scholar 

  13. J. P. Wolfe, Imaging Phonons Acoustic Wave Propagation in Solids (Cambridge Univ. Press, New York, 1998).

    Book  Google Scholar 

  14. I. I. Kuleev, I. G. Kuleev, S. M. Bakharev, and A. V. Inyushkin, Phys. Solid State 55, 31 (2013).

    Article  ADS  Google Scholar 

  15. I. G. Kuleev, I. I. Kuleev, S. M. Bakharev, and V. V. Ustinov, Phonon Focusing and Phonon Transport in Single-Crystal Nanostructures (UMTs UPI, Ekaterinburg, 2018) [in Russian].

  16. I. I. Kuleyev, I. G. Kuleyev, S. M. Bakharev, and A. V. Inyushkin, Phys. Status Solidi B 251, 991 (2014).

    Article  ADS  Google Scholar 

  17. F. I. Fedorov, Theory of Elastic Waves in Crystals (Nauka, Moscow, 1965; Springer, New York, 1968).

  18. I. G. Kuleev and I. I. Kuleev, Phys. Solid State 49, 437 (2007).

    Article  ADS  Google Scholar 

  19. L. E. Gurevich, Zh. Eksp. Teor. Fiz. 16, 196 (1946);

    Google Scholar 

  20. Zh. Eksp. Teor. Fiz. 16, 416 (1946).

  21. C. Herring, Phys. Rev. 96, 1163 (1954).

    Article  ADS  Google Scholar 

  22. T. H. Geballe and G. W. Hull, Phys. Rev. 93, 1134 (1954).

    Article  ADS  Google Scholar 

  23. L. E. Gurevich and I. Ya. Korenblit, Sov. Phys. Solid State 6, 661 (1964).

    Google Scholar 

  24. I. G. Lang and S. T. Pavlov, Sov. Phys. JETP 36, 793 (1972).

    ADS  Google Scholar 

  25. I. G. Kuleev, I. I. Kuleev, A. N. Taldenkov, A. V. Inyushkin, V. I. Ozhogin, K. M. Itoh, and E. E. Haller, J. Exp. Theor. Phys. 96, 1078 (2003).

    Article  ADS  Google Scholar 

  26. G. D. Mahan, L. Lindsay, and D. A. Broido, J. Appl. Phys. 116, 245102 (2014).

    Article  ADS  Google Scholar 

  27. I. G. Kuleyev, I. I. Kuleyev, S. M. Bakharev, and V. V. Ustinov, J. Exp. Theor. Phys. 123, 489 (2016).

    Article  ADS  Google Scholar 

  28. B. Truel, C. Elbaum, and B. B. Chick, Ultrasonic Methods in Solid State Physics (Academic, New York, London, 1969).

    Google Scholar 

  29. I. I. Kuleev, S. M. Bakharev, I. G. Kuleev, and V. V. Ustinov, Phys. Met. Metallogr. 118, 10 (2017).

    Article  ADS  Google Scholar 

  30. P. G. Klemens, Proc. Phys. Soc. London, Ser. A 68, 1113 (1955).

    Google Scholar 

  31. A. P. Zhernov and A. V. Inyushkin, Isotope Effects in Solids (Kurchatov. Inst., Moscow, 2001) [in Russian].

    Google Scholar 

  32. I. I. Kuleyev and I. G. Kuleyev, Phys. Met. Metall. 119, 1141 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed under the program “Spin” of the Russian Academy of Sciences (project no. AAAA-A18-118020290194-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Kuleyev.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuleyev, I.I., Kuleyev, I.G. Role of Quasi-Longitudinal and Quasi-Transverse Phonons in the Drag Thermopower of Potassium Crystals at Low Temperatures. J. Exp. Theor. Phys. 129, 46–58 (2019). https://doi.org/10.1134/S1063776119060141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119060141

Navigation