Skip to main content
Log in

Nonlinear Surface Waves at the Interface between Optical Media with Different Nonlinearity Induction Mechanisms

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Different types of nonlinear surface waves with a peculiar polarization, which emerge at the interface between a photorefractive crystal and a medium with Kerr nonlinearity, are described. The cases of focusing and defocusing nonlinearity are considered. It is shown that several types of nonlinear surface waves with an asymmetric profile can exist in such a system. Waves of one type attenuate with increasing distance from the interface without oscillations towards the bulk of the photorefractive crystal as well as the Kerr crystal, while waves of another type decay with oscillations. Two types of localized states differing in the form of field damping with and without oscillations can exist near the interface between the photorefractive crystal and the medium with defocusing Kerr nonlinearity. Dispersion relations are obtained and the conditions for the existence of all aforementioned types of waves depending on the optical characteristics of the crystals are indicated. Exact solutions to dispersion equations are obtained in explicit analytic form; these solutions describe the dependence of the propagation constant on the optical characteristics of the crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. V. Tekkozyan, A. Babajanyan, and K. Nerkararyan, Opt. Commun. 305, 190 (2013).

    Article  ADS  Google Scholar 

  2. Y. V. Bludov, D. A. Smirnova, Yu. S. Kivshar, N. M. R. Peres, and M. I. Vasilevsky, Phys. Rev. B 89, 035406 (2014).

    Article  ADS  Google Scholar 

  3. I. S. Panyaev and D. G. Sannikov, J. Opt. Soc. Am. B 33, 220 (2016).

    Article  ADS  Google Scholar 

  4. A. I. Ignatov, I. A. Nechepurenko, and D. G. Baranov, Ann. Phys. 528, 537 (2016).

    Article  MathSciNet  Google Scholar 

  5. F. Yang and H. Tian, J. Opt. 18, 1 (2016).

    MathSciNet  Google Scholar 

  6. I. Haddouche and L. Cherbi, Opt. Commun. 382, 132 (2017).

    Article  ADS  Google Scholar 

  7. Y. M. Aleksandrov and V. V. Yatsishen, J. Nano- Electron. Phys. 9, 03039 (2017).

    Google Scholar 

  8. V. N. Belyi and N. A. Khilo, Tech. Phys. Lett. 23, 467 (1997).

    Article  ADS  Google Scholar 

  9. D. Kh. Usievich, B. A. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, Quantum Electron. 40, 437 (2010).

    Article  ADS  Google Scholar 

  10. D. Kh. Usievich, B. A. Nurligareev, V. A. Sychugov, and L. I. Ivleva, Quantum Electron.

  11. S. A. Chetkin and I. M. Akhmedzhanov, Quantum Electron. 41, 980 (2011).

    Article  ADS  Google Scholar 

  12. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, San Diego, 2003).

    Google Scholar 

  13. Yu. S. Kivshar, A. M. Kosevich, and O. A. Chubykalo, Phys. Rev. A 41, 1677 (1990).

    Article  ADS  Google Scholar 

  14. F. Kh. Abdullaev, B. B. Baizakov, and B. A. Umarov, Opt. Commun. 156, 341 (1998).

    Article  ADS  Google Scholar 

  15. I. E. Dikshtein, D. S. Nikitov, and S. A. Nikitov, Phys. Solid State 40, 1710 (1998).

    Article  ADS  Google Scholar 

  16. A. A. Sukhorukov and Yu. S. Kivshar, Phys. Rev. Lett. 87, 083901 (2001).

    Article  ADS  Google Scholar 

  17. I. V. Shadrivov, A. A. Sukhorukov, Yu. S. Kivshar, A. A. Zharov, A. D. Boardman, and P. Egan, Phys. Rev. E 69, 016617 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  18. I. V. Shadrivov, A. A. Sukhorukov, and Yu. S. Kivshar, Phys. Rev. E 67, 057602 (2003).

    Article  ADS  Google Scholar 

  19. S. E. Savotchenko, Russ. Phys. J. 47, 556 (2004).

    Article  Google Scholar 

  20. S. E. Savotchenko, Mod. Phys. Lett. B 32, 1850120 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  21. S. E. Savotchenko, J. Exp. Theor. Phys. 127, 437 (2018).

    Article  ADS  Google Scholar 

  22. N. N. Akhmediev, V. I. Korneev, and Yu. V. Kuz’menko, Sov. Phys. JETP 61, 62 (1985).

    Google Scholar 

  23. A. D. Boardman, M. M. Shabat, and R. F. Wallis, J. Phys. D: Appl. Phys. 24, 1702 (1991).

    Article  ADS  Google Scholar 

  24. S. E. Savotchenko, Kondens. Sredy Mezhfaz. Granitsy 19, 567 (2017).

    Google Scholar 

  25. S. E. Savotchenko, Vestn. VGU, Ser.: Fiz. Mat. 1, 44 (2018).

    Google Scholar 

  26. S. E. Savotchenko, Surf. Interfaces 13, 157 (2018).

    Article  Google Scholar 

  27. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optics (Nauka, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  28. V. S. Zuev, J. Russ. Laser Res. 26, 347 (2005).

    Article  Google Scholar 

  29. N. Zhong, Z. Wang, M. Chen, X. Xin, R. Wu, Y. Cen, and Y. Li, Sens. Actuators, B 254, 133 (2018).

    Article  Google Scholar 

  30. D. Zhang, Z. Li, W. Hu, and B. Cheng, Appl. Phys. Lett. 67, 2431 (1995).

    Article  ADS  Google Scholar 

  31. T. Strudley, R. Bruck, B. Mills, and O. L. Muskens, Light: Sci. Appl. 3, e207 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Savotchenko.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savotchenko, S.E. Nonlinear Surface Waves at the Interface between Optical Media with Different Nonlinearity Induction Mechanisms. J. Exp. Theor. Phys. 129, 159–167 (2019). https://doi.org/10.1134/S1063776119070100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119070100

Navigation