Skip to main content
Log in

Design Features of the Neutral Particle Diagnostic System for the ITER Tokamak

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The control of the deuterium–tritium (DT) fuel isotopic ratio has to ensure the best performance of the ITER thermonuclear fusion reactor. The diagnostic system described in this paper allows the measurement of this ratio analyzing the hydrogen isotope fluxes (performing neutral particle analysis (NPA)). The development and supply of the NPA diagnostics for ITER was delegated to the Russian Federation. The diagnostics is being developed at the Ioffe Institute. The system consists of two analyzers, viz., LENPA (Low Energy Neutral Particle Analyzer) with 10–200 keV energy range and HENPA (High Energy Neutral Particle Analyzer) with 0.1–4.0MeV energy range. Simultaneous operation of both analyzers in different energy ranges enables researchers to measure the DT fuel ratio both in the central burning plasma (thermonuclear burn zone) and at the edge as well. When developing the diagnostic complex, it was necessary to account for the impact of several factors: high levels of neutron and gamma radiation, the direct vacuum connection to the ITER vessel, implying high tritium containment, strict requirements on reliability of all units and mechanisms, and the limited space available for accommodation of the diagnostic hardware at the ITER tokamak. The paper describes the design of the diagnostic complex and the engineering solutions that make it possible to conduct measurements under tokamak reactor conditions. The proposed engineering solutions provide a safe—with respect to thermal and mechanical loads—common vacuum channel for hydrogen isotope atoms to pass to the analyzers; ensure efficient shielding of the analyzers from the ITER stray magnetic field (up to 1 kG); provide the remote control of the NPA diagnostic complex, in particular, connection/disconnection of the NPA vacuum beamline from the ITER vessel; meet the ITER radiation safety requirements; and ensure measurements of the fuel isotopic ratio under high levels of neutron and gamma radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Afanasyev, F. V. Chernyshev, A. I. Kislyakov, S. S. Kozlovski, B. V. Ljublin, M. I. Mironov, A. D. Melnik, V. G. Nesenevich, M. P. Petrov, and S. Ya. Petrov, Nucl. Instrum. Methods Phys. Res. A 621, 456 (2010).

    Article  ADS  Google Scholar 

  2. S. S. Medley, A. J. H. Donne, R. Kaita, A. I. Kislyakov, M. P. Petrov, and A. L. Roquemore, Rev.Sci. Instrum. 79, 011101 (2008).

    Article  ADS  Google Scholar 

  3. M. P. Petrov, V. I. Afanasyev, S. Corti, A. Gondhalekar, A. V. Khudoleev, A. A. Korotkov, and A. C. Maas, in Proceedings of the International Conference on Plasma Physics, Innsbruck, 1992 (Eur. Phys. Society, Geneva, 1992), Vol. 16C, Pt. II, p. 1031.

    Google Scholar 

  4. M. I. Mironov, V. I. Afanasyev, A. Murari, M. Santala, and P. Beaumont, Plasma Phys. Control. Fusion 52, 10 (2010).

    Article  Google Scholar 

  5. M. P. Petrov, R. V. Budny, H. H. Duong, R. K. Fisher, N. N. Gorelenkov, J. M. McChesney, D. K. Mansfield, S. S. Medley, P. B. Parks, M. H. Redi, and A. L. Roquemore, Nucl. Fusion 35, 1437 (1995).

    Article  ADS  Google Scholar 

  6. Y. Kusama, M. Nemoto, V. I. Afanassiev, S. S. Kozlovskij, S. Ya. Petrov, M. Satoh, Y. Tsukahara, A. I. Kislyakov, M. P. Petrov, and H. Takeuchi, Fusion Eng. Des. 34–35, 531 (1997).

    Article  Google Scholar 

  7. www.hamamatsu.com/resources/pdf/etd/H8500_-H10966_TPMH1327E02.pdf.

  8. V. M. Amoskov, A. V. Belov, V. A. Belyakov, T. F. Belyakova, Yu. V. Gribov, V. P. Kukhtin, E. A. Lamzin, and S. E. Sytchevsky, Plasma Dev. Operat. 16 (2), 89 (2008).

    Article  Google Scholar 

  9. www.vatvalve.com/products/catalog/F/771_1_V.

  10. www.techneticsgroup.com/bin/Helicoflex.pdf.

  11. V. Afanasyev, M. Mironov, V. Nesenevich, M. Petrov, S. Petrov, I. Kedrov, E. Kuzmin, and B. Lyublin, in Proceedings of the 1st EPS Conference on Plasma Diagnostics, Frascati, Italy, April 14–17, 2015.

  12. K. Vukolov, A. Borisov, N. Deryabina, and I. Orlovskiy, Fusion Eng. Des. 96–97, 177 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Petrov.

Additional information

Original Russian Text © S.Ya. Petrov, V.I. Afanasyev, A.D. Melnik, M.I. Mironov, A.S. Navolotsky, V.G. Nesenevich, M.P. Petrov, F.V. Chernyshev, I.V. Kedrov, E.G. Kuzmin, B.V. Lyublin, S.S. Kozlovski, A.N. Mokeev, 2016, published in Voprosy Atomnoi Nauki i Tekhniki, Seriya: Termoyadernyi Sintez, 2016, Vol. 39, No. 1, pp. 68–80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, S.Y., Afanasyev, V.I., Melnik, A.D. et al. Design Features of the Neutral Particle Diagnostic System for the ITER Tokamak. Phys. Atom. Nuclei 80, 1268–1278 (2017). https://doi.org/10.1134/S1063778817070109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778817070109

Keywords

Navigation