Skip to main content
Log in

Relaxation times and mean free paths of phonons in the boundary scattering regime for silicon single crystals

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The phonon focusing in cubic dielectric crystals and its influence on the heat transfer in the boundary phonon scattering regime at low temperatures have been investigated. The mean free paths of phonons of different polarizations in samples of infinite and finite lengths with circular and square cross sections have been calculated in the anisotropic continuum model. For samples of infinite length with circular and square cross sections in the case of the equality of the cross-sectional areas, the angular dependences of the mean free paths normalized by the Casimir length almost completely coincide. It has been shown that the anisotropy of the mean free paths decreases significantly upon changing over from infinite samples to samples of finite length. For silicon crystals, the anisotropy of the phonon mean free paths has been analyzed for each of the branches of the phonon spectrum. It has been found that the mean free paths for phonons of each vibrational mode reach maximum values in the directions of focusing, and, in these directions, they exceed the mean free paths for phonons of the other vibrational modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J. Appl. Phys. 93, 793 (2003).

    Article  ADS  Google Scholar 

  2. A. D. McConnell and K. E. Goodson, Annu. Rev. Heat Transfer 14, 128 (2005).

    Google Scholar 

  3. H. B. G. Casimir, Physica (Amsterdam) 5(6), 495 (1938).

    Article  ADS  Google Scholar 

  4. R. Berman, F. E. Simon, and J. M. Ziman, Proc. R. Soc. London, Ser. A 220, 171 (1953).

    Article  ADS  Google Scholar 

  5. R. Berman, E. L. Foster, and J. M. Ziman, Proc. R. Soc. London, Ser. A 231, 130 (1955).

    Article  ADS  Google Scholar 

  6. A. K. McCurdy, H. J. Maris, and C. Elbaum, Phys. Rev. B: Solid State 2(2), 4077 (1970).

    Article  ADS  Google Scholar 

  7. J. P. Harrison and J. P. Pendrys, Phys. Rev. B: Solid State 7, 3902 (1973).

    Article  ADS  Google Scholar 

  8. M. N. Wybourne, C. G. Eddison, and M. J. Kelly, J. Phys. C: Solid State Phys. 17, L607 (1984); C. G. Eddison and M. N. Wybourne, J. Phys. C: Solid State Phys. 18, 5225 (1985).

    Article  ADS  Google Scholar 

  9. Z. Wang and N. Mingo, Appl. Phys. Lett. 99(10), 101903 (2011).

    Article  ADS  Google Scholar 

  10. A. K. McCurdy, Phys. Rev. B: Condens. Matter 26, 6971 (1982).

    Article  ADS  Google Scholar 

  11. I. G. Kuleev, Phys. Solid State 42(6), 1009 (2000); I. G. Kuleev, Phys. Solid State 44 (2), 223 (2002).

    Article  ADS  Google Scholar 

  12. I. G. Kuleev and I. I. Kuleev, Phys. Solid State 49(3), 437 (2007).

    Article  ADS  Google Scholar 

  13. I. G. Kuleyev, I. I. Kuleyev, and I. Yu. Arapova, J. Phys.: Condens. Matter 20, 465201 (2008).

    Article  ADS  Google Scholar 

  14. J. J. Hall, Phys. Rev. 161, 756 (1967).

    Article  ADS  Google Scholar 

  15. P. Carruthers, Rev. Mod. Phys. 33, 92 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. B. M. Mogilevskii and A. F. Chudnovskii, Thermal Conductivity of Semiconductors (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  17. Y. P. Joshi, Pramana 18, 461 (1982).

    Article  ADS  Google Scholar 

  18. H. Lundt, M. Kerstan, A. Huber, and P. O. Hahn, in Proceedings of the 7th International Symposium on Silicon Materials Science and Technology, The Electrochemical Society, Pennington, New Jersey, May 22–27, 1994, Vol. 94-10, p. 218.

  19. M. P. Zaitlin, L. M. Scherr, and A. C. Anderson, Phys. Rev. B: Solid State 12, 4487 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Kuleyev.

Additional information

Original Russian Text © I.I. Kuleyev, I.G. Kuleyev, S.M. Bakharev, A.V. Inyushkin, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 1, pp. 24–35.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuleyev, I.I., Kuleyev, I.G., Bakharev, S.M. et al. Relaxation times and mean free paths of phonons in the boundary scattering regime for silicon single crystals. Phys. Solid State 55, 31–44 (2013). https://doi.org/10.1134/S106378341301023X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341301023X

Keywords

Navigation