Skip to main content
Log in

Formation of silver nanoparticles on the silicate glass surface after ion exchange

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

It has been experimentally shown that water vapor thermal treatment of silicate glasses with silver ions introduced by ion exchange leads to the formation of a silver nanoparticle layer with a high packing density on the glass surface. The results of studying the morphology of samples by atomic force and electron microscopy and X-ray spectral analysis of the composition of nanoparticles, as well as the optical density and luminescence spectra in different stages of the treatment, are presented. Mechanisms explaining the processes responsible for silver nanoparticle formation upon water vapor thermal treatment on the glass surface after ion exchange are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore 2012).

    Google Scholar 

  2. M. Eichelbaum and K. Rademann, Adv. Funct. Mater. 19, 1 (2009).

    Article  Google Scholar 

  3. Y. Chen, J. J. Jaakola, A. Saynatjoki, A. Tervonen, S. Honkanen, J. Raman Spectrosc. 42, 936 (2011).

    Article  ADS  Google Scholar 

  4. Silver Nanoparticles, Ed by D. P. Perez (InTech, Vukovar, Croatia, 2010).

    Google Scholar 

  5. L. A. Dykman, V. A. Bogatyrev, S. Yu. Shchegolev, and N. G. Khlebtsov, Gold Nanoparticles: Synthesis, Properties and Biomedical Applications (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  6. S. V. Karpov and V. V. Slabko, Optical and Photo-Physical Properties of Fractal Structured Metal Sols (Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2003) [in Russian].

    Google Scholar 

  7. L. Shang, S. Dong, and G. U. Nienhaus, Nano Today 6, 401 (2011).

    Article  Google Scholar 

  8. B. S. Gonzalez, M. J. Rodriguez, C. Blanco, J. Rivas, M. A. Lopez-Quintela, and J. M. G. Martinho, Nano Lett. 10, 4217 (2010).

    Article  ADS  Google Scholar 

  9. A. P. Boltaev, N. A. Penin, A. O. Pogosov, and F. A. Pudonin, JETP 96(5), 940 (2003).

    Article  ADS  Google Scholar 

  10. R. A. Ganeev, A. I. Ryasnyanskii, A. L. Stepanov, M. K. Kodirov, and T. Usmanov, Opt. Spectrosc. 95(6), 967 (2003).

    Article  ADS  Google Scholar 

  11. A. L. Stepanov, Rev. Adv. Mater. Sci. 4, 45 (2003).

    Google Scholar 

  12. A. I. Ignat’ev, A. V. Nashchekin, V. M. Nevedomskii, O. A. Podsvirov, A. I. Sidorov, A. P. Solov’ev, and O. A. Usov, Tech. Phys. 56(5), 662 (2011).

    Article  Google Scholar 

  13. C. Mohr, M. Dubiel, and H. Hofmeister, J. Phys.: Condens. Matter 13, 525 (2001).

    Article  ADS  Google Scholar 

  14. Yu. Kaganovskii, E. Mogilko, A. A. Lipovskii, and M. Rosenbluh, J. Phys.: Conf. Ser. 61, 508 (2007).

    Article  ADS  Google Scholar 

  15. N. V. Nikonorov and G. T. Petrovskii, Glass Phys. Chem. 25(1), 16 (1999).

    Google Scholar 

  16. A. Tervonen, B. R. West, and S. Honkanen, Opt. Eng. 50, 071107 (2011).

    Article  ADS  Google Scholar 

  17. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).

    Book  Google Scholar 

  18. S. I. Najafi, Introduction to Glass Integrated Optics (Artech House, Norwood, Massachusetts, United States, 1992).

    Google Scholar 

  19. G. H. Chartier, P. J. R. Laybourn, and A. Girod, Electron. Lett. 22, 925 (1986).

    Article  Google Scholar 

  20. A. Tervonen and S. Honkanen, Opt. Lett. 13, 71 (1988).

    Article  ADS  Google Scholar 

  21. C. Tang, Y.-M. Sung, and J. Lee, Appl. Phys. Lett. 100, 201903 (2012).

    Article  ADS  Google Scholar 

  22. W. Zheng and T. Kurobori, J. Lumin. 131, 36 (2011).

    Article  Google Scholar 

  23. G. A. Ozin and H. Huber, Inorg. Chem. 17(1), 155 (1978).

    Article  Google Scholar 

  24. B. J. Soller and D. G. Hall, J. Opt. Soc. Am. B 19, 2437 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Fedrigo, W. Harbich, and J. Buttet, J. Chem. Phys. 99, 5712 (1993).

    Article  ADS  Google Scholar 

  26. C. Felix, C. Sieber, W. Harbich, J. Buttet, I. Rabin, W. Schulze, and G. Ertl, Chem. Phys. Lett. 313, 105 (1999).

    Article  ADS  Google Scholar 

  27. H. Xu and K. S. Suslick, ACS Nano 4, 3209 (2010).

    Article  Google Scholar 

  28. Optical Technician’s Handbook, Ed. by S. M. Kuznetsov and M. A. Okatov (Mashinostroenie, Leningrad, 1983) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Sidorov.

Additional information

Original Russian Text © P.A. Obraztsov, A.V. Nashchekin, N.V. Nikonorov, A.I. Sidorov, A.V. Panfilova, P.N. Brunkov, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 6, pp. 1180–1186.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obraztsov, P.A., Nashchekin, A.V., Nikonorov, N.V. et al. Formation of silver nanoparticles on the silicate glass surface after ion exchange. Phys. Solid State 55, 1272–1278 (2013). https://doi.org/10.1134/S1063783413060267

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413060267

Keywords

Navigation