Skip to main content
Log in

Temperature of the Magnetic Ordering of the Trivalent Iron Oxide ε-Fe2O3

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The trivalent iron oxide ε-Fe2O3 is a fairly rare polymorphic iron oxide modification, which only exists in the form of nanoparticles. This magnetically ordered material exhibits an intriguing magnetic behavior, specifically, a significant room-temperature coercivity HC (up to ~20 kOe) and a magnetic transition in the temperature range of 80–150 K accompanied by a sharp decrease in the HC value. Previously, the temperature of the transition to the paramagnetic state for ε-Fe2O3 was believed to be about 500 K. However, recent investigations have shown that the magnetically ordered phase exists in ε-Fe2O3 also at higher temperatures and, around 500 K, another magnetic transition occurs. Using the data on the magnetization and temperature evolution of the ferromagnetic resonance spectra, it is shown that the temperature of the transition of ε-Fe2O3 particles 3–10 nm in size to the paramagnetic state is ~850 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. Tronc, S. Chaneac, and J. P. Jolivet, J. Solid State Chem. 139, 93 (1998).

    Article  ADS  Google Scholar 

  2. M. Gich, A. Roig, C. Frontera, E. Molins, J. Sort, M. Popovici, G. Chouteau, D. Martın Marero, and J. Nogues, J. Appl. Phys. 98, 044307 (2005).

    Article  ADS  Google Scholar 

  3. M. Popovici, M. Gich, D. Nińanský, A. Roig, C. Savii, L. Casas, E. Molins, K. Zaveta, C. Enache, J. Sort, S. de Brion, G. Chouteau, and J. Nogués, Chem. Mater. 16, 5542 (2004).

    Article  Google Scholar 

  4. V. N. Nikolić, M. Tadić, M. Panjan, L. Kopanja, N. Cvje-tićanin, and V. Spasojević, Ceram. Int. 43, 3147 (2017).

    Article  Google Scholar 

  5. V. N. Nikolić, V. Spasojević, M. Panjan, L. Kopanja, A. Mraković, and M. Tadić, Ceram. Int. 43, 7497 (2017).

    Article  Google Scholar 

  6. D. A. Balaev, S. S. Yakushkin, A. A. Dubrovskii, G. A. Bukhtiyarova, K. A. Shaikhutdinov, and O. N. Mart’yanov, Tech. Phys. Lett. 42, 347 (2016).

    Article  ADS  Google Scholar 

  7. E. Tronc, C. Chaneac, J. P. Jolivet, and J. M. Grene-che, J. Appl. Phys. 98, 053901 (2005).

    Article  ADS  Google Scholar 

  8. M. Kurmoo, J.-L. Rehspringer, A. Hutlova, C. D’Orlans, S. Vilminot, C. Estournes, and D. Niznansky, Chem. Mater. 17, 1106 (2005).

    Article  Google Scholar 

  9. M. Gich, C. Frontera, A. Roig, E. Taboada, E. Molins, H. R. Rechenberg, J. D. Ardisson, W. A. A. Macedo, C. Ritter, V. Hardy, J. Sort, V. Skumryev, and J. No-gués, Chem. Mater. 18, 3889 (2006).

    Article  Google Scholar 

  10. J. Tućek, R. Zboril, A. Namai, and S. Ohkoshi, Chem. Mater. 22, 6483 (2010).

    Article  Google Scholar 

  11. L. Machala, J. Tućek, and R. Zboril, Chem. Mater. 23, 3255 (2011).

    Article  Google Scholar 

  12. J. Jin, S. Ohkoshi, and K. Hashimoto, Adv. Mater. 16, 48 (2004).

    Article  Google Scholar 

  13. S. Ohkoshi, S. Sakurai, J. Jin, and K. Hashimoto, J. Appl. Phys. 97, 10K312 (2005).

  14. S. Sakurai, J. Shimoyama, K. Hashimoto, and S. Ohko-shi, Chem. Phys. Lett. 458, 333 (2008).

    Article  ADS  Google Scholar 

  15. S. Sakurai, A. Namai, K. Hashimoto, and S.-I. Ohko-shi, J. Am. Chem. Soc. 131, 18299 (2009).

    Article  Google Scholar 

  16. S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, Angew. Chem. Int. Ed. 46, 8392 (2007).

    Article  Google Scholar 

  17. A. I. Dmitriev, O. V. Koplak, A. Namai, H. Tokoro, S. Ohkoshi, and R. B. Morgunov, Phys. Solid State 56, 1795 (2014).

    Article  ADS  Google Scholar 

  18. A. I. Dmitriev, O. V. Koplak, A. Namai, H. Tokoro, S. Ohkoshi, and R. B. Morgunov, Phys. Solid State 55, 2252 (2013).

    Article  ADS  Google Scholar 

  19. A. I. Dmitriev, Tech. Phys. Lett. 44, 137 (2018).

    Article  Google Scholar 

  20. A. Namai, M. Yoshikiyo, K. Yamada, S. Sakurai, T. Goto, T. Yoshida, T. Miyazaki, M. Nakajima, T. Sue-moto, H. Tokoro, and S. Ohkoshi, Nat. Commun. 3, 1035 (2012).

    Article  Google Scholar 

  21. S. Ohkoshi, A. Namai, T. Yamaoka, M. Yoshikiyo, K. Imoto, T. Nasu, S. Anan, Y. Umeta, K. Nakagawa, and H. Tokoro, Sci. Rep. 6, 27212 (2016).

    Article  ADS  Google Scholar 

  22. S. Ohkoshi, A. Namai, M. Yoshikiyo, K. Imoto, K. Tamazaki, K. Matsuno, O. Inoue, T. Ide, K. Ma-sada, M. Goto, T. Goto, T. Yoshida, and T. Miyazaki, Angew. Chem. 128, 11575 (2016).

    Article  Google Scholar 

  23. M. Nakaya, R. Nishida, N. Hosoda, and A. Muramatsu, Cryst. Res. Technol. 52, 1700110 (2017). https://doi.org/10.1002/crat.201700110

    Article  Google Scholar 

  24. S. S. Yakushkin, D. A. Balaev, A. A. Dubrovskiy, S. V. Semenov, Yu. V. Knyazev, O. A. Bayukov, V. L. Kirillov, R. D. Ivantsov, I. S. Edelman, and O. N. Martyanov, Ceram. Int. 44, 17852 (2018). https://doi.org/10.1016/j.ceramint.2018.06.254

    Article  Google Scholar 

  25. G. A. Bukhtiyarova, M. A. Shuvaeva, O. A. Bayukov, S. S. Yakushkin, and O. N. Martyanov, J. Nanopart. Res. 13, 5527 (2011).

    Article  ADS  Google Scholar 

  26. S. S. Yakushkin, G. A. Bukhtiyarova, and O. N. Martyanov, J. Struct. Chem. 54, 876 (2013).

    Article  Google Scholar 

  27. O. S. Ivanova, R. D. Ivantsov, I. S. Edelman, E. A. Pe-trakovskaja, D. A. Velikanov, Y. V. Zubavichus, V. I. Zaikovskii, and S. A. Stepanov, J. Magn. Magn. Mater. 401, 880 (2016).

    Article  ADS  Google Scholar 

  28. A. A. Dubrovskiy, D. A. Balaev, K. A. Shaykhutdinov, O. A. Bayukov, O. N. Pletnev, S. S. Yakushkin, G. A. Bukhtiyarova, and O. N. Martyanov, J. Appl. Phys. 118, 213901 (2015).

    Article  ADS  Google Scholar 

  29. D. A. Balaev, I. S. Poperechny, A. A. Krasikov, K. A. Shaikhutdinov, A. A. Dubrovskiy, S. I. Popkov, A. D. Balaev, S. S. Yakushkin, G. A. Bukhtiyarova, O. N. Martyanov, and Yu. L. Raikher, J. Appl. Phys. 117, 063908 (2015).

    Article  ADS  Google Scholar 

  30. J. L. Garcıa-Muñoz, A. Romaguera, F. Fauth, J. No-gués, and M. Gich, Chem. Mater. 29, 9705 (2017).

    Article  Google Scholar 

  31. S. S. Yakushkin, A. A. Dubrovskiy, D. A. Balaev, K. A. Shaykhutdinov, G. A. Bukhtiyarova, and O. N. Martyanov, J. Appl. Phys. 111, 44312 (2012).

    Article  Google Scholar 

  32. D. A. Balaev, A. A. Dubrovskiy, K. A. Shaykhutdinov, O. A. Bayukov, S. S. Yakushkin, G. A. Bukhtiyarova, and O. N. Martyanov, J. Appl. Phys. 114, 163911 (2013).

    Article  ADS  Google Scholar 

  33. G. A. Bukhtiyarova, O. N. Mart’yanov, S. S. Yakushkin, M. A. Shuvaeva, and O. A. Bayukov, Phys. Solid State 52, 826 (2010).

    Article  Google Scholar 

  34. S. S. Yakushkin, D. A. Balaev, A. A. Dubrovskiy, S. V. Semenov, K. A. Shaikhutdinov, M. A. Kazakova, G. A. Bukhtiyarova, O. N. Martyanov, and O. A. Bayukov, J. Supercond. Nov. Magn. 31, 1209 (2017).

    Article  Google Scholar 

  35. A. D. Balaev, Yu. V. Boyarshinov, M. M. Karpenko, and B. P. Khrustalev, Prib. Tekh. Eksp., No. 3, 167 (1985).

  36. G. V. Skrotskii and L. V. Kurbatov, in Ferromagnetic Resonance, Collection of Articles, Ed. by S. V. Vonsovskii (Fizmatlit, Moscow, 1961), p. 25 [in Russian].

    Google Scholar 

  37. R. S. de Biasi and T. C. Devezas, J. Appl. Phys. 49, 2466 (1978).

    Article  ADS  Google Scholar 

  38. R. Berger, J. Kliava, J. C. Bissey, and V. Baietto, J. Appl. Phys. 87, 7389 (2000).

    Article  ADS  Google Scholar 

  39. Yu. L. Raikher and V. I. Stepanov, Phys. Rev. B 50, 6250 (1994).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Science Foundation, project no. 17-12-01111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Balaev.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaev, D.A., Dubrovskiy, A.A., Yakushkin, S.S. et al. Temperature of the Magnetic Ordering of the Trivalent Iron Oxide ε-Fe2O3. Phys. Solid State 61, 345–349 (2019). https://doi.org/10.1134/S1063783419030053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419030053

Navigation