Skip to main content
Log in

Super-Heat Resistant Polymer Nanocomposites Based on Heterocyclic Networks: Structure and Properties

  • POLYMERS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The heterocyclic polymer network nanocomposites obtained from bisphtalonitrile and various (from 0.03 to 5 wt %) modified silicate montmorillonite (MMT) nanolayers are studied. The nanostructure together with thermal, relaxation, and elastic properties of the composites are characterized with transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDXS), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). DMA and TGA measurements were performed in air and nitrogen mediums in the temperature range from 20 to 600–900°C. There was a various degree of exfoliation of MMT in the matrix to form single nanolayers, as well as thin and “thick” packs of MMT nanolayers, depending on its amount. We showed that there are strong constraining dynamics effects of the matrix by nanoparticles and sharp dynamic heterogeneity in the glass transition. We found that there are possibilities of complete suppression of the latter and of preservation of elastic characteristics of the composites unchanged at the temperatures from 20 to 600°C. The nanocomposites exhibit uniquely high thermal properties. A glass transition temperature of 570°C and satisfactory thermal stability are achieved with preservation of integrity of the material up to ~500°C in air and up to ∼900°C in nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Chemistry and Technology of Cyanate Ester Resins, Ed. by I. Hamerton (Chapman and Hall, Glasgow, 1994).

    Google Scholar 

  2. Thermostable Polycyanurates: Synthesis, Modification, Structure and Properties, Ed. by A. M. Fainleib (Nova Science, New York, 2010).

    Google Scholar 

  3. M. Derradji, J. Wang, and W. B. Liu, Phthalonitrile Resins and Composites. Properties and Applications (Elsevier, New York, 2018).

    Google Scholar 

  4. T. M. Keller and A. Va, US Patent No. 4408035 (1983).

  5. T. M. Keller and T. Price, J. Macromol. Sci., A 18, 931 (1982).

  6. T. M. Keller, J. Polymer Sci. A 26, 3199 (1988).

    Google Scholar 

  7. Y. Lei, G. Hu, R. Zhao, H. Guo, and X. Zhao, J. Phys. Chem. Solids 73, 1335 (2012).

    Article  ADS  Google Scholar 

  8. M. Derradji, N. Ramdani, T. Zhang, J. Wang, Z. Lin, M. Yang, X. Xu, and W. Liu, Mater. Lett. 149, 81 (2015).

    Article  Google Scholar 

  9. M. Derradji, J. Wang, and W. B. Liu, Mater. Lett. 182, 380 (2016).

    Article  Google Scholar 

  10. M. Derradji, N. Ramdani, L.-D. Gong, A. Henniche, and W. B. Liu, Polym. Adv. Technol. 27, 882 (2016).

    Article  Google Scholar 

  11. X. Li, B. Yu, D. Zhang, J. Lei, and Z. Nan, Polymers 9, 334 (2017).

    Article  Google Scholar 

  12. V. A. Bershtein, A. M. Fainleib, P. N. Yakushev, D. A. Kirilenko, K. G. Gusakova, D. I. Markina, O. G. Melnychuk, and V. A. Ryzhov, Polymer 165, 39 (2019).

    Article  Google Scholar 

  13. D. A. Kirilenko, A. T. Dideykin, A. E. Aleksenskiy, A. A. Sitnikova, S. G. Konnikov, and A. Ya. Vul’, Micron 68, 23 (2015).

    Article  Google Scholar 

  14. E. P. Gannelis, R. Krishnamourt, and E. Manias, Adv. Polym. Sci. 138, 108 (1999).

    Google Scholar 

  15. V. A. Bershtein and P. N. Yakushev, Adv. Polym. Sci. 230, 73 (2010).

    Article  Google Scholar 

  16. V. A. Bershtein, A. M. Fainleib, L. M. Egorova, K. G. Gusakova, O. P. Grigoyeva, D. A. Kirilenko, S. G. Konnikov, V. A. Ryzhov, P. N. Yakushev, and N. Lavrenyuk, Nanoscale Res. Lett. 10, 165 (2015).

    Article  ADS  Google Scholar 

  17. V. A. Bershtein, A. M. Fainleib, D. A. Kirilenko, P. N. Yakushev, K. G. Gusakova, N. Lavrenyuk, and V. A. Ryzhov, Polymer 103, 36 (2016).

    Article  Google Scholar 

  18. V. A. Bershtein, A. M. Fainleib, K. G. Gusakova, D. A. Kirilenko, P. N. Yakushev, L. M. Egorova, N. Lavrenyuk, and V. A. Ryzhov, Eur. Polym. J. 85, 375 (2016).

    Article  Google Scholar 

  19. A. Leszczynska, J. Njuguna, K. Pielichowski, and J. R. Banerjee, Thermochim. Acta 454, 1 (2007).

    Article  Google Scholar 

  20. V. A. Bershtein, A. M. Fainleib, P. N. Yakushev, D. A. Kirilenko, K. G. Gusakova, O. Melnichuk, and V. A. Ryzhov, Eur. Polym. Congress (EPF 2019), Thesis, abstract NANO-C38, р. 192, Crete, June 9–14 (2019).

Download references

ACKNOWLEDGMENTS

TEM and EDXS experiments were performed using equipment of the Federal Joint Research Center supported by the Ministry of Education and Science of Russian Federation “Materials Science and Characterization in Advanced Technology” (project no. RFMEFI62117X0018). TGA experiments were performed using equipment of the Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bershtein.

Ethics declarations

There are no conflicts of interest to declare.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bershtein, V.A., Fainleib, A.M., Yakushev, P.N. et al. Super-Heat Resistant Polymer Nanocomposites Based on Heterocyclic Networks: Structure and Properties. Phys. Solid State 61, 1494–1501 (2019). https://doi.org/10.1134/S1063783419080080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419080080

Keywords:

Navigation