Skip to main content
Log in

Photoemission Studies of the Electronic Structure of GaN Grown by Plasma Assisted Molecular Beam Epitaxy

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of experimental studies of the electronic and photoemission properties of the GaN epitaxial layer grown by molecular beam epitaxy with plasma activation of nitrogen on a SiC/Si (111) substrate are presented. The electronic structure of the GaN surface and the ultrathin Li/GaN interface was first studied in situ under ultrahigh vacuum with various Li coatings. The experiments were carried out using photoelectron spectroscopy with synchrotron radiation in the photon energy range of 75–850 eV. Photoemission spectra in the region of the valence band and surface states and photoemission spectra from N 1s, Ga 3d, and Li 2s core levels are studied with various submonolayer Li coatings. It is found that Li adsorption causes significant changes in the general form of the spectra caused by charge transfer between the Li layer and the lower N and Ga layers. It is established that the GaN surface has predominantly the N polarity. The semiconductor nature of the Li/GaN interface is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. Den Baars, S. Nakamura, and U. K. Mishra, Jpn. J. Appl. Phys. 44, L173 (2005).

    Article  Google Scholar 

  2. S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C. C. Pan, C. C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, and M. Iza, Acta Mater. 61, 945 (2013).

    Article  Google Scholar 

  3. W. R. L. Lambrecht, B. Segall, S. Strite, G. Martin, A. Agarwal, H. Morkoç, and A. Rockett, Phys. Rev. B 50, 14155 (1994).

    Article  ADS  Google Scholar 

  4. T. Strasser, C. Solterbeck, F. Starrost, and W. Schattke, Phys. Rev. B 60, 11577 (1999).

    Article  ADS  Google Scholar 

  5. G. V. Benemanskaya, M. N. Lapushkin, and S. N. Timoshnev, Surf. Sci. 603, 2474 (2009).

    Article  ADS  Google Scholar 

  6. D. Yujie, C. Benkang, W. Xiaohui, Z. Junju, L. Biao, and W. Meishan, Appl. Surf. Sci. 258, 7425 (2012).

    Article  Google Scholar 

  7. M. Lozac, S. Ueda, S. Liu, H. Yoshikawa, S. Liwen, X. Wang, B. Shen, K. Sakoda, K. Kobayashi, and M. Sumiya, Sci. Technol. Adv. Mater. 14, 015007 (2013).

    Article  Google Scholar 

  8. A. Eisenhardt, S. Krischok, and M. Himmerlich, Appl. Phys. Lett. 102, 231602 (2013).

    Article  ADS  Google Scholar 

  9. D. Skuridina, D. V. Dinh, B. Lacroix, P. Ruterana, M. Hoffmann, Z. Sitar, M. Pristovsek, M. Kneissl, and P. Vogt, J. Appl. Phys. 114, 173503 (2013).

    Article  ADS  Google Scholar 

  10. R. Wasielewski, M. Grodzicki, J. Sito, K. Lament, P. Mazur, and A. Ciszewski, Acta Phys. Polon. A 132, 354 (2017).

    Article  Google Scholar 

  11. C. I. Wu and A. Kahn, Appl. Surf. Sci. 162–163, 250 (2000).

    Article  ADS  Google Scholar 

  12. F. Machuca, Y. Sun, Z. Liu, K. Ioakeimidi, P. Pianetta, and R. F. W. Pease, J. Vac. Sci. Technol. B 18, 3042 (2000).

    Article  Google Scholar 

  13. T. U. Kampen, M. Eyckeler, and W. Moench, Appl. Surf. Sci. 123–124, 28 (1998).

    Article  ADS  Google Scholar 

  14. G. V. Benemanskaya, S. A. Kukushkin, P. A. Dementev, M. N. Lapushkin, S. N. Timoshnev, and D. V. Smirnov, Solid State Commun. 271, 6 (2018).

    Article  ADS  Google Scholar 

  15. G. V. Benemanskaya, S. N. Timoshnev, S. V. Ivanov, G. E. Frank-Kamenetskaya, D. E. Marchenko, and G. N. Iluridze, J. Exp. Theor. Phys. 118, 600 (2014).

    Article  ADS  Google Scholar 

  16. S. A. Kukushkin and A. V. Osipov, J. Appl. Phys. 113, 0249091 (2013).

    Article  Google Scholar 

  17. S. A. Kukushkin, A. M. Mizerov, A. V. Osipov, A. V. Redkov, and S. N. Timoshnev, Thin Solid Films 646, 158 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the Helmholtz-Zentrum Berlin and the Russian–German line of the BESSY II synchrotron for the opportunity to carry out experiments and for the help during the experiments.

Funding

The growth experiments were carried out within the framework of fulfilling the state task of the Ministry of Education and Science of the Russian Federation no. 16.9789.2017/BCh. Photoemission studies of the samples were carried out under a general agreement on the scientific research activities between Skoltech and the St. Petersburg National Research Academic University of the Russian Academy of Sciences (no. 3663-MRA, project 4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Timoshnev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timoshnev, S.N., Mizerov, A.M., Benemanskaya, G.V. et al. Photoemission Studies of the Electronic Structure of GaN Grown by Plasma Assisted Molecular Beam Epitaxy. Phys. Solid State 61, 2282–2285 (2019). https://doi.org/10.1134/S1063783419120564

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419120564

Keywords:

Navigation