Skip to main content
Log in

The method of autonomous blocks with magnetic nanoinclusions and floquet channels applied for simulation of magnetic nanostructures with allowance for the exchange and boundary conditions

  • Electrodynamics and Wave Propagation
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A decomposition method is developed for simulation of microwave- and infrared-band devices containing magnetic nanomaterials and magnetophotonic crystals. The method is based on autonomous blocks that are rectangular parallelepipeds with magnetic nanoinclusions and virtual Floquet channels (referred below as magnetic Floquet autonomous blocks (MFABs)) on the faces. A computational algorithm of solution of a nonlinear diffraction boundary value problem by means of the Galerkin method is developed for constructing MFAB descriptors. The coefficient of TEM wave transmission through a lattice of ferrite nanospheres is calculated. The threshold values of the pumping-wave amplitude such that exchange spin waves are parametrically excited in ferrite-nanosphere lattices are determined from bifurcation points of the nonlinear Maxwell operator. This excitation is observed when distances between magnetic nanoparticles are reduced to the exchange-interaction length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Makeeva and O. A. Golovanov, Radiotekh. Elektron. (Moscow) 51, 261 (2006) [J. Commun. Technol. Electron. 51, 245 (2006)].

    Google Scholar 

  2. G. S. Makeeva and O. A. Golovanov, Radiotekh. Elektron. (Moscow) 52, 106 (2007) [J. Commun. Technol. Electron. 52, 96 (2007)].

    Google Scholar 

  3. O. A. Golovanov, Radiotekh. Elektron. (Moscow) 51, 1423 (2006) [J. Commun. Technol. Electron. 51, 1138 (2006)].

    Google Scholar 

  4. G. S. Makeeva and O. A. Golovanov, Fiz. Voln. Protsessov Radiotekh. Sist. 11(2), 14 (2008).

    Google Scholar 

  5. V. V. Nikol’skii and T. I. Lavrova, Radiotekh. Elektron. (Moscow) 23, 241 (1978).

    Google Scholar 

  6. V. V. Nikol’skii and O. A. Golovanov, Radiotekh. Elektron. (Moscow) 24, 1070 (1979).

    Google Scholar 

  7. A. G. Gurevich and G. A. Melkov, Magnetic Oscillations and Waves (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  8. S. Jung, J. B. Ketterson, and V. Chandrasekhar, Phys. Rev. B 66, 132405 (2002).

    Article  Google Scholar 

  9. R. Skomski, M. Chipara, and D. J. Sellmyer, J. Appl. Phys. 93, 7604 (2003).

    Article  Google Scholar 

  10. V. V. Nikol’skii, Electromagnetics and Propagation of Radio Waves (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  11. V. V. Nikol’skii and T. I. Nikol’skaya, Decomposition Approach in Electrodynamics Problems (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  12. O. A. Golovanov, G. S. Makeeva, and A. A. Tumanov, Fiz. Voln. Protsessov Radiotekh. Sist. 10(4), 63 (2007).

    Google Scholar 

  13. O. A. Golovanov, Radiotekh. Elektron. (Moscow) 35, 1853 (1990).

    Google Scholar 

  14. N. S. Bakhvalov, Numerical Methods: Analysis, Algebra, Ordinary Differential Equations (Nauka, Moscow, 1975). [in Russian].

    Google Scholar 

  15. V. V. Nikol’skii, Variational Methods for Interior Problems of Electromagnetics (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  16. A. M. Lyapunov, General Problem on the Stability of Motion (Gostekhteorizdat, Moscow, 1950) [in Russian].

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © O.A. Golovanov, G.S. Makeeva, 2009, published in Radiotekhnika i Elektronika, 2009, Vol. 54, No. 12, pp. 1421–1428.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golovanov, O.A., Makeeva, G.S. The method of autonomous blocks with magnetic nanoinclusions and floquet channels applied for simulation of magnetic nanostructures with allowance for the exchange and boundary conditions. J. Commun. Technol. Electron. 54, 1345–1352 (2009). https://doi.org/10.1134/S106422690912002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422690912002X

Keywords

Navigation