Skip to main content
Log in

Pure-Cubic Optical Soliton Perturbation with Complex Ginzburg–Landau Equation Having a Dozen Nonlinear Refractive Index Structures

  • ELECTRODYNAMICS AND WAVE PROPAGATION
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

This paper recovers soliton solutions to perturbed pure–cubic complex Ginzburg–Landau equation having a dozen forms of nonlinear refractive index. Two integration schemes, namely the new mapping method and the addendum to Kudryashov’s approach have made this retrieval possible. Bright, dark and singular soliton solutions are recovered and enumerated for every nonlinear form. As a byproduct of the schemes, periodic solutions have emerged and are presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. A. Abdou, A. A. Soliman, A. Biswas, M. Ekici, Q. Zhou, and S. P. Moshokoa, “Dark-singular combo optical solitons with fractional complex Ginzburg–Landau equation,” Optik 171, 463 (2018).

    Article  Google Scholar 

  2. G. Akram and N. Mahak, “Application of the first integral method for solving (1 + 1)-dimensional cubic-quintic complex Ginzburg–Landau equation,” Optik 164, 210 (2018).

    Article  Google Scholar 

  3. A. H. Arnous, A. R. Seadawy, R. T. Alqahtani, and A. Biswas, “Optical solitons with complex Ginzburg–Landau equation by modified simple equation method,” Optik 144, 475 (2017).

    Article  Google Scholar 

  4. S. Arshed, “Soliton solutions of fractional complex Ginzburg–Landau equation with Kerr law and non-Kerr law media,” Optik, 160, 322 (2018).

    Article  Google Scholar 

  5. S. Arshed, A. Biswas, F. Mallawi, and M. R. Belic, “Optical solitons with complex Ginzburg–Landau equation having three nonlinear forms,” Phys. Lett. A 383 (36), 126026 (2019).

    Article  MathSciNet  Google Scholar 

  6. A. Biswas, “Chirp-free bright optical solitons and conservation laws for complex Ginzburg–Landau equation with three nonlinear forms,” Optik 174, 207 (2018).

    Article  Google Scholar 

  7. A. Biswas, “Temporal 1-soliton solution of the complex Ginzburg–Landau equation with power law nonlinearity,” Prog. In Electromagn. Res. (PIER) 96, 1 (2009).

  8. A. Biswas and R. T. Alqahtani, “Optical soliton perturbation with complex Ginzburg–Landau equation by semi-inverse variational principle,” Optik 147, 77 (2017).

    Article  Google Scholar 

  9. Y. Biswas, E. Yildirim, H. Yasar, A. S. Triki, M. Z. Alshomrani, Q. Ullah, S. P. Zhou, Moshokoa, and M. Belic, “Optical soliton perturbation with complex Ginzburg–Landau equation using trial solution approach,” Optik 160, 44 (2018).

    Article  Google Scholar 

  10. A. Biswas, Y. Yildirim, E. Yasar, H. Triki, A. S. Alshomrani, M. Z. Ullah, Q. Zhou, S. P. Moshokoa, and M. Belic. “Optical soliton perturbation for complex Ginzburg–Landau equation with modified simple equation method,” Optik 158, 399 (2018).

    Article  Google Scholar 

  11. M. Mirzazadeh, M. Ekici, A. Sonmezoglu, M. Eslami, Q. Zhou, A. H. Kara, D. Milovic, F. B. Majid, A. Biswas, and M. Belic, “Optical solitons with complex Ginzburg–Landau equation,” Nonlin. Dynam. 85, 1979 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Naghshband and M. A. F. Araghi, “Solving generalized quintic complex Ginzburg–Landau equation by homotopy analysis method,” Ain Shams Eng. J. 9, 607 (2018).

    Article  Google Scholar 

  13. M. S. Osman, “On complex wave solutions governed by the 2D Ginzburg–Landau equation with variable coefficients,” Optik 156, 169 (2018).

    Article  Google Scholar 

  14. S. Shwetanshumala, “Temporal solitons of modified complex Ginzberg–Landau equation,” Prog. in Electromagn. Res. Lett. 3, 17 (2008).

  15. H. Triki, S. Crutcher, A. Yildirim, T. Hayat, O. M. Aldossary, and A. Biswas, “Bright and dark solitons of the modified complex Ginzburg–Landau equation with parabolic and dual-power law nonlinearity,” Roman. Rep. Phys. 64, 367 (2012).

    Google Scholar 

  16. Y. Yan and W. Liu. “Stable transmission of solitons in the complex cubic-quintic Ginzburg–Landau equation with nonlinear gain and higher-order effects,” Appl. Math. Lett. 98, 171 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  17. E. M. E. Zayed, M. E. M. Alngar, M. El-Horbaty, A.  Biswas, A. S. Alshomrani, M. Ekici, Y. Yildirm, and M. R. Belic, “Optical solitons with complex Ginzburg–Landau equation having a plethora of nonlinear forms with a couple of improved integration norms,” Optik 207, 163804 (2020).

    Article  Google Scholar 

  18. Y. Zhao, C.-Y. Xia, and H.-B. Zeng, “Cascade replication of soliton solutions in the one-dimensional complex cubic-quintic Ginzburg–Landau equation,” Phys. Lett. A 384 (18), 126395 (2020).

    Article  MATH  Google Scholar 

  19. A. Blanco-Redondo, C. M. d. Sterke, J. E. Sipe, T. F. Krauss, B. J. Eggleton, and C. Husko, “Pure-quartic solitons,” Nature Commun. 7, 10427 (2016).

    Article  Google Scholar 

  20. A. Bansal, A. Biswas, Q. Zhou, and M. M. Babatin “Lie symmetry analysis for cubic-quartic nonlinear Schrodinger’s equation,” Optik 169, 12 (2018).

    Article  Google Scholar 

  21. A. Biswas, H. Triki, Q. Zhou, S. P. Moshokoa, M. Z. Ullah, and M. Belic, “Cubic-quartic optical solitons in Kerr and power law media,” Optik 144, 357 (2017).

    Article  Google Scholar 

  22. A. Biswas, A. H. Kara, M. Z. Ullah, Q. Zhou, H. Triki, and M. Belic, “Conservation laws for cubic-quartic optical solitons in Kerr and power law media,” Optik 145, 650 (2017).

    Article  Google Scholar 

  23. A. Biswas and S. Arshed, “Application of semi-inverse variational principle to cubic-quartic optical solitons with Kerr and power law nonlinearity,” Optik 172, 847 (2018).

    Article  Google Scholar 

  24. A. Biswas, A. Sonmezoglu, M. Ekici, A. H. Kara, A. K. Alzahrani, and M. R. Belic, “Cubic-quartic optical solitons with Kudryashov’s law of refractive index by extended trial function”. To appear in Computational Mathematics and Mathematical Physics.

  25. G. Genc, M. Ekici, A. Biswas, and M. R. Belic, “Cubic-quartic optical solitons with Kudryashov’s law of refractive index by F-expansion schemes,” Results Phys. 18, 103273 (2020).

    Article  Google Scholar 

  26. O. Gonzalez-Gaxiola, A. Biswas, F. Mallawi, and M. Belic, “Cubic-quartic bright optical solitons by improved Adomian decomposition method,” J. Adv. Res. 21, 161 (2020).

    Article  Google Scholar 

  27. D. Lu, A. R. Seadawy, J. Wang, M. Arshad, and U. Farooq, “Soliton solutions of the generalised third-order nonlinear Schrödinger equation by two mathematical methods and their stability,” Pramana 93, Article 44 (2019).

    Article  Google Scholar 

  28. N. Nasreen, A. R. Seadawy, D. Lu, and W. A. Albarakati, “Dispersive solitary wave and soliton solutions of the generalized third order nonlinear Schrödinger dynamical equation by modified analytical method”. Res. Phys. 15, 102641 (2019).

    Google Scholar 

  29. K. Hosseini, M. S. Osman, M. Mirzazadeh, and F. Rabiei, “Investigation of different wave structures to the generalized third-order nonlinear Scrödinger equation,” Optik 206, 164259 (2020).

    Article  Google Scholar 

  30. Y. Yildirim, A. Biswas, M. Asma, P. Guggilla, S. Khan, M. Ekici, A. K. Alzahrani, and M. R. Belic, “Pure-cubic optical soliton perturbation with full nonlinearity,” Optik 222, 165394 (2020).

    Article  Google Scholar 

  31. E. M. E. Zayed, M. E. M. Alngar, A. Biswas, M. Asma, M. Ekici, A. K. Alzahrani, and M. R. Belic, “Pure-cubic optical soliton perturbation with full nonlinearity by unied Riccati equation expansion,” Optik 223, 165445 (2020).

    Article  Google Scholar 

  32. N. A. Kudryashov, “Method for finding highly dispersive optical solitons of nonlinear differential equations,” Optik 206, 163550 (2020).

    Article  Google Scholar 

  33. N. A. Kudryashov, “A generalized model for description of propagation pulses in optical fiber,” Optik 189, 42 (2019).

    Article  Google Scholar 

  34. N. A. Kudryashov, “Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrödinger equation,” Optik 206, 164335 (2020).

    Article  Google Scholar 

  35. N. A. Kudryashov, “Optical solitons of mathematical model with arbitrary refractive index,” Optik 224, 165391 (2020).

    Article  Google Scholar 

  36. N. A. Kudryashov and E. V. Antonova, “Solitary waves of equation for propagation pulse with power nonlinearities,” Optik 217, 164881 (2020).

    Article  Google Scholar 

  37. N. A. Kudryashov, “First integrals and general solution of the complex Ginzburg–Landau equation,” Appl. Math. Comput. 386, 125407 (2020).

    MathSciNet  MATH  Google Scholar 

  38. N. A. Kudryashov, “Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations,” Appl. Math. Comput. 371, 124972 (2020).

    MathSciNet  MATH  Google Scholar 

  39. N. A. Kudryashov, “Solitary wave solutions of hierarchy with non-local nonlinearity,” Appl. Math. Lett. 103, 106155 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  40. N. A. Kudryashov, “Highly dispersive optical solitons of equation with various polynomial nonlinearity law,” Chaos, Solitons & Fractals 140, 110202 (2020).

    Article  MathSciNet  Google Scholar 

  41. X. Zeng and X. Yong, “A new mapping method and its applications to nonlinear partial dierential equations,” Phys. Lett. 372, 6602 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Biswas, “Optical soliton cooling with polynomial law of nonlinear refractive index,” J. Optics. 49, 580 (2020).

    Article  Google Scholar 

  43. E. M. E. Zayed, M. E. M. Alngar, A. Biswas, A. H. Kara, L. Moraru, M. Ekici, A. K. Alzahrani, and M. R. Belic, “Solitons and conservation laws in magneto-optic waveguides with triple-power law nonlinearity,” J. Optics 49, 584 (2020).

    Article  Google Scholar 

  44. A. Biswas, A. Sonmezoglu, M. Ekici, A. K. Alzahrani, and M. R. Belic, “Cubic-quartic optical solitons with dierential group delay for Kudryashov’s model by extended trial function,” J. Commun. Technol. Electron. 65, 1384 (2020).

    Article  Google Scholar 

  45. E. M. E. Zayed, M. E. M. Alngar, A. Biswas, M. Ekici, A. K. Alzahrani, and M. R. Belic, “Chirped and chirp-free optical solitons in fiber Bragg gratings with Kudryashov’s model in presence of dispersive reflectivity,” J. Commun. Technol. Electron. 65, 1267 (2020).

    Article  Google Scholar 

Download references

Funding

The project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia under grant number KEP-PhD-26-130-41. The authors, therefore, acknowledge with thanks DSR technical and financial support.

The authors also declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Biswas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsayed M. E. Zayed, Alngar, M.E., Biswas, A. et al. Pure-Cubic Optical Soliton Perturbation with Complex Ginzburg–Landau Equation Having a Dozen Nonlinear Refractive Index Structures. J. Commun. Technol. Electron. 66, 481–544 (2021). https://doi.org/10.1134/S1064226921050120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226921050120

Keywords:

Navigation