Skip to main content
Log in

Polycyclic aromatic hydrocarbons in urban soils (Moscow, Eastern District)

  • Degradation, Rehabilitation, and Conservation of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The content and distribution of 17 individual structures of polycyclic aromatic hydrocarbons (PAH) were determined in the surface soil layers of the Eastern Administrative District of Moscow and in the background soils of the Meshchera Lowland. The maximum contribution to the PAH spectrum in the background soil belonged to the structures with a small number of nuclei mainly of natural genesis. In the urban soils, the mean total PAH was 5385 ng/g; it was 40 times higher than in the background objects. The unsubstituted multinuclear hydrocarbons as compared to homologues accumulated two times more intensely. The total PAH concentration in the soils of different functional zones varied from 4288 (old residential area) to 8655 ng/g (new blocks). The soils of each zone were characterized by a constant composition of polyarenes, which reflected a specific combination of pollution sources. Using the maps of the benz(a)pyrene contents in the soils in different years, two of its contrasting technogenic anomalies were revealed in the northern and central parts of the district. In 2006, in these areas, the benz(a)pyrene concentration exceeded its MPC by 150 times. The ecological hazard of PAH pollution was assessed. The estimate obtained took into account the carcinogenic potential of 13 individual polyarenes by their equivalents with respect to benz(a)pyrene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Agapkina, P. A. Chikov, A. A. Shelepchikov, et al., “Polycyclic Aromatic Hydrocarbons in Soils of Moscow,” Vest. Mosk. Univ., Ser. 17: pochvoved., No. 3, 38–46 (2007).

  2. T. A. Alekseeva and T. A. Teplitskaya, Spectrofluorimetric Methods for Analyzing Aromatic Hydrocarbons in Natural and Anthropogenic Environments (Gidrometeoizdat, Leningrad, 1981) [in Russian].

    Google Scholar 

  3. V. R. Bityukova and D. I. Slobodskoi, “Changes in the Territorial Structure of Industrial Contamination of Moscow in the 1990s,” Vest. Mosk. Univ., Ser. 5: Geogr., No. 2, 50–59 (2003).

  4. D. N. Gabov, V. A. Beznosikov, B. M. Kondratenok, and E. V. Yakovleva, “Formation of Polycyclic Aromatic Hydrocarbons in Northern and Middle Taiga Soils,” Pochvovedenie, No. 11, 1334–1343 (2008) [Eur. Soil Sci. 41(11), 1180–1188 (2008)].

  5. A. N. Gennadiev, Yu. I. Pikovskii, S. S. Chernyanskii, et al., “Forms of Polycyclic Aromatic Hydrocarbons and Factors of Their Accumulations in Soils Affected by Technogenic Pollution (Moscow Oblast),” Pochvovedenie, No. 7, 804–818 (2004) [Eur. Soil Sci. 37 (7), 697–709 (2004)].

  6. Geochemistry of Polycyclic Aromatic Hydrocarbons in Rocks and Soils, Ed. by A. N. Gennadiev and Yu. I. Pik- ovskii (Mosk. Gos. Univ., Moscow, 1996) [in Russian].

    Google Scholar 

  7. GN 2.1.7.2041-06. Maximum Permissible Concentrations (MPCs) of Chemical Substances in the Soil: Hygienic Norms (Moscow, 2006) [in Russian].

  8. M. I. Gerasimova, M. N. Stroganova, N. V. Mozharova, and T. V. Prokof’eva, Anthropogenic Soils: Genesis, Geography, and Remediation, Ed. by G. V. Dobrovol’skii (Oikumena, Moscow, 2003) [in Russian].

    Google Scholar 

  9. Engineering Ecology and Environmental Management, Ed. by N. I. Ivanov (Logos, Moscow, 2002) [in Russian].

    Google Scholar 

  10. N. S. Kasimov, Methodology and Procedure of the Landscape-Geochemical Analysis of Cities: Ecogeochemistry of Urban Landscapes, Ed. by N. S. Kasimov (Mosk. Gos. Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  11. B. M. Kogut, E. Shul’ts, A. Yu. Galaktionov, and N. A. Titova, “Concentrations and Composition of Polycyclic Aromatic Hydrocarbons in the Granulodensimetric Fractions of Soils in Moscow Parks,” Pochvovedenie, No. 10, 1182–1189 (2006) [Eur. Soil Sci. 39(10), 1066–1073 (2006)].

  12. N. E. Kosheleva and E. M. Nikiforova, “Anthropogenic Transformation of Physicochemical Properties of Urban Soils and Its Effect on the Accumulation of Lead,” in The II International Scientific Conference “Current Problems of Soil Pollution”, Moscow, Russia, 2007 (Moscow, 2007), pp. 123–127 [in Russian].

  13. A. A. Krasnopeeva, Extended Abstract of Candidate’s Dissertation in Geography (Moscow, 2009).

  14. E. D. Lodygin, S. N. Chukov, V. A. Beznosikov, and D. N. Gabov, “Polycyclic Aromatic Hydrocarbons in Soils of Vasilievsky Island (St. Petersburg),” Pochvovedenie, No. 12, 1494–1500 (2008) [Eur. Soil Sci. 41(12), 1321–1326 (2008)].

  15. E. M. Nikiforova, Geochemical Barriers in Soils of Urban Ecosystems (with Moscow as an Example), Ed. by N. S. Kasimov and A. E. Vorob’ev (Mosk. Gos. Univ., Moscow, 2002) [in Russian].

    Google Scholar 

  16. E. M. Nikiforova and T. A. Alekseeva, “Polycyclic Aromatic Hydrocarbons in the Soils of Roadside Ecosystems of Moscow,” Pochvovedenie, No. 1, 47–58 (2002) [Eur. Soil Sci. 35(1), 42–52 (2002)].

  17. E. M. Nikiforova and T. A. Alekseeva, “Polycyclic Aromatic Hydrocarbons in Soils of Suburban Agricultural Landscapes in Eastern Moscow Region,” Pochvovedenie, No. 11, 1366–1380 (2005) [Eur. Soil Sci. 38 (11), 1213–1225 (2005)].

  18. E. M. Nikiforova, I. S. Kozin, and K. Tsird, “Contamination of Urban Soils with Polycyclic Aromatic Hydrocarbons in Relation to the Effect of Heating,” Pochvovedenie, No. 1, 91–102 (1993).

  19. E. M. Nikiforova and T. A. Teplitskaya, “Technogenic Geochemical Anomalies of Heavy Hydrocarbons in Soils of the Northwestern Russian Plain,” Vest. Mosk. Univ., Ser. 5: Geogr., No. 5, 32–45 (1979).

  20. State Report on the Environment State of Moscow in 1979, Ed. by A. G. Ishkov (Prima-press, Moscow, 1998) [in Russian].

    Google Scholar 

  21. N. A. Pavlova, “Stability of Benz[a]pyrene in the Soil,” in Hygiene of Inhabited Areas (Kiev, 1980), No. 19, pp. 113–116 [in Russian].

  22. GN 1.1.725-98. List of Substances, Products, Production Processes, and Domestic and Natural Factors Carcinogenic for Humans: Hygienic Norms.

  23. Yu. I. Pikovskii, Natural and Technogenic Fluxes of Hydrocarbons in the Environment (Mosk. Gos. Univ., Moscow, 1993) [in Russian].

    Google Scholar 

  24. Soil, City, and Ecology, Ed. by G. V. Dobrovol’skii (Moscow, 1997) [in Russian].

  25. F. Ya. Rovinskii, T. A. Teplitskaya, and T. A. Alekseeva, Background Monitoring of Polycyclic Aromatic Hydrocarbons (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  26. N. I. Tonkopii, G. E. Shestopalova, and V. Ya. Rozanova, “Some Factors Determining the Degradation of Benz[a]pyrene in the Soil,” in Carcinogenic Substances in the Environment (Moscow, 1979), pp. 65–68 [in Russian].

  27. S. S. Chernyanskii, Yu. V. Volosatova, and A. A. Krasnopeeva, “Formation Features of Polyaromatic Hydrocarbon Anomalies in the Soil Cover,” Vest. Mosk. Univ., Ser. 5: Geogr., No. 2, 31–37 (2007).

  28. A. I. Shilina, L. V. Vaneeva, and A. V. Zhuravleva, “Lifetime of Benz[a]pyrene in the Soil at the Introduction with Soil Dust Particles,” in Migration of Pollutants in Soils and Adjacent Environments (Gidrometeoizdat, Leningrad, 1980), pp. 100–105 [in Russian].

    Google Scholar 

  29. Ecogeochemistry of Urban Landscapes, Ed. by N. S. Kasimov (Mosk. Gos. Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  30. S. Azimi, V. Rocher, M. Muller, et al., “Sources, Distribution, and Variability of Hydrocarbons and Metals in Atmospheric Deposition in an Urban Area (Paris, France),” Sci. Total Environ. 337, 223–239 (2005).

    Article  Google Scholar 

  31. P. Baumard, H. Budzinski, Q. Michon, et al., “Origin and Bioavailability of PAHs in the Mediterranean Sea from Mussel and Sediment,” Estuar. Coast. Shelf Sci. 47, 77–90 (1998).

    Article  Google Scholar 

  32. Q. W. Bu, Z. H. Zhang, S. Lu, and F. P. He, “Vertical Distribution and Environmental Significance of PAHs in Soil Profiles in Bejing, China,” Environ. Geochem. Health 31, 119–131 (2008).

    Article  Google Scholar 

  33. J. Dai, S. Li, Y. Zhang, et al., “Distributions, Sources, and Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Topsoil at Ji’nan City, China,” Environ. Monit. Assess. 147, 317–326 (2008).

    Article  Google Scholar 

  34. R. M. Dickhut, E. A. Canuel, K. E. Gustafson, et al., “Automotive Sources of Carcinogenic Polycyclic Aromatic Hydrocarbons Associated with Particulate Matter in the Chesapeake Bay Region,” Environ. Sci. Technol. 34, 4635–4640 (2000).

    Article  Google Scholar 

  35. H. E. Fengpeng, Z. Zhang, Y. Wan, et al., “Polycyclic Aromatic Hydrocarbons in Soils of Beijing and Tianjin Region: Vertical Distribution, Correlation with TOC, and Transport Mechanism,” J. Environ. Sci. 21, 675–685 (2009).

    Article  Google Scholar 

  36. M. Howsam, K. C. Jones, and P. Ineson, “Dynamics of PAH Deposition, Cycling, and Storage in the Mixed Deciduous (Quercus-Fraxinus) Woodland Ecosystem,” Environ. Pollut. 113, 163–176 (2001).

    Article  Google Scholar 

  37. Y.-F. Jiang, X.-T. Wang, F. Wang, et al., “Levels, Composition Profiles, and Sources of Polycyclic Aromatic Hydrocarbons in Urban Soil of Shanghai, China,” Chemosphere 75, 1112–1118 (2009).

    Article  Google Scholar 

  38. A. R. Johnsen and U. Karlson, “Diffuse PAH Contamination of Surface Soils: Environmental Occurrence, Bioavailability, and Microbial Degradation,” Appl. Microbiol. Biotechnol. 76, 533–543 (2007).

    Article  Google Scholar 

  39. N. R. Khalili, P. A. Scheff, and T. M. Holsen, “PAH Source Fingerprints for Coke Ovens, Diesel and Gasoline Engines, Highway Tunnels, and Wood Combustion Emissions,” Atmos. Environ. 29, 533–542 (1995).

    Article  Google Scholar 

  40. Y. Liu, L. Chen, J. Zhao, et al., “Polycyclic Aromatic Hydrocarbons in the Surface Soil of Shanghai, China: Concentrations, Distribution, and Sources,” Org. Geochem. 41(4), 355–362 (2010).

    Article  Google Scholar 

  41. L. Ma, S. Chu, H. Cheng, et al., “Polycyclic Aromatic Hydrocarbons Contamination in Subsoil from Outskirts of Beijing, People’s Republic of China,” Geoderma, 129, 200–210 (2005).

    Article  Google Scholar 

  42. B. Mai, S. Qi, E. Y. Zeng, et al., “Distribution of Polycyclic Aromatic Hydrocarbons in the Coastal Region of Macao, China: Assessment of Input Sources and Transport Pathways Using Compositional Analysis,” Environ. Sci. Technol. 37, 4855–4863 (2003).

    Article  Google Scholar 

  43. H. M. Malcolm and S. Dobson, The Calculation of an Environmental Assessment Level (EAL) for Atmospheric PAHs Using Relative Potencies (Department of the Environment, London, 1994), pp. 34–46.

    Google Scholar 

  44. E. Morillo, A. S. Romero, L. Madrid, et al., “Characterization and Sources of PAHs and Potentially Toxic Metals in Urban Environments of Sevilla (Southern Spain),” Water Air Soil Pollut. 187, 41–51 (2008).

    Article  Google Scholar 

  45. E. Morillo, A. S. Romero, C. Maqueda, et al., “Soil Pollution by PAHs in Urban Soils: a Comparison of Three European Cities,” J. Envir. Monit. 9, 1001–1008 (2007).

    Article  Google Scholar 

  46. A. Motelay-Massei, D. Ollivon, B. Garban, et al., “Distribution and Spatial Trends of PAHs and PCBs in Soils in the Seine River Basin, France,” Chemosphere 55, 555–565 (2004).

    Article  Google Scholar 

  47. W. F. Rogge, L. M. Hildemann, M. A. Mazurek, and G. R. Cass, “Sources of Fine Organic Aerosol. 3. Road Dust, Tire Debris, and Organometallic Brake Lining Dust: Roads as Sources and Sinks,” Environ. Sci. Technol. 27, 1892–1904 (1993).

    Article  Google Scholar 

  48. H. H. Soclo, P. Garrigues, and M. Ewald, “Origin of Polycyclic Aromatic Hydrocarbons (PAHs) in Coastal Marin Sediments: Case Studies in Cotonou (Benin) and Aquitaine (France) Areas,” Marine Pollut. Bull. 40, 387–396 (2000).

    Article  Google Scholar 

  49. D.-G. Wang, M. Yang, H.-L. Jia, et al., “Polycyclic Aromatic Hydrocarbons in Urban Street Dust and Surface Soil: Comparisons of Concentration, Profile, and Source,” Arch. Environ. Contam. Toxicol. 56, 173–180 (2009).

    Article  Google Scholar 

  50. G. Wang, H. W. Mielke, V. Quach, et al., “Determination of Polycyclic Aromatic Hydrocarbons and Trace Metals in New Orleans Soils and Sediments,” Soil Sedim. Contam. 13, 313–327 (2004).

    Article  Google Scholar 

  51. K. Wang, Y. Shen, S. Zhang, et al., “Application of Spatial Analysis and Multivariate Analysis Techniques in Distribution and Source Study of Polycyclic Aromatic Hydrocarbons in Topsoil of Bejing, China,” Environ. Geol. 56, 1041–1050 (2009).

    Article  Google Scholar 

  52. W. Wilcke, M. Krauss, G. Safronov, et al., “Polycyclic Aromatic Hydrocarbons (PAHs) in Soils of the Moscow Region: Concentrations, Temporal Trends, and Small-Scale Distribution,” J. Environ. Qual. 34(5), 1581–1590 (2005).

    Article  Google Scholar 

  53. M. B. Yunker, R. W. Macdonald, R. Vingarzan, et al., “PAHs in the Fraser River Basin: a Critical Appraisal of PAH Ratios as Indicators of PAH Source and Composition,” Org. Geochem. 33, 489–515 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Kosheleva.

Additional information

Original Russian Text © E.M. Nikiforova, N.E. Kosheleva, 2011, published in Pochvovedenie, 2011, No. 9, pp. 1114–1127.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikiforova, E.M., Kosheleva, N.E. Polycyclic aromatic hydrocarbons in urban soils (Moscow, Eastern District). Eurasian Soil Sc. 44, 1018–1030 (2011). https://doi.org/10.1134/S1064229311090092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229311090092

Keywords

Navigation