Skip to main content
Log in

Accuracy of MUSCL-Type Schemes in Shock Wave Calculations

  • MATHEMATICS
  • Published:
Doklady Mathematics Aims and scope Submit manuscript

Abstract

The central-difference Nessyahu–Tadmor (NT) scheme is considered, which is built using second-order MUSCL reconstruction of fluxes. The accuracy of the NT scheme is studied as applied to calculating shock waves propagating with a variable velocity. It is shown that this scheme has the first order of integral convergence on intervals with one of the boundaries lying in the region of influence of the shock wave. As a result, the local accuracy of the NT scheme is significantly reduced in these areas. Test calculations are presented that demonstrate these properties of the NT scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. K. Godunov, Mat. Sb. 47 (3), 271–306 (1959).

    MathSciNet  Google Scholar 

  2. B. Van Leer, J. Comput. Phys. 32 (1), 101–136 (1979). https://doi.org/10.1016/0021-9991(79)90145-1

    Article  Google Scholar 

  3. A. Harten, J. Comput. Phys. 32 (1), 101–136 (1983). https://doi.org/10.1016/0021-9991(83)90136-5

    Article  Google Scholar 

  4. A. Harten and S. Osher, SIAM J. Numer. Anal. 24 (2), 279–309 (1987). https://doi.org/10.1007/978-3-642-60543-7_11

    Article  MathSciNet  Google Scholar 

  5. G. S. Jiang and C. W. Shu, J. Comput. Phys. 126, 202–228 (1996). https://doi.org/10.1006/jcph.1996.0130

    Article  MathSciNet  Google Scholar 

  6. B. Cockburn, Lect. Notes Math. 1697, 151–268 (1998). https://doi.org/10.1007/BFb0096353

    Article  Google Scholar 

  7. S. A. Karabasov and V. M. Goloviznin, J. Comput. Phys. 228, 7426–7451 (2009). https://doi.org/10.1016/j.jcp.2009.06.037

    Article  MathSciNet  Google Scholar 

  8. O. A. Kovyrkina and V. V. Ostapenko, Dokl. Math. 82 (1), 599–603 (2010). https://doi.org/10.1134/S1064562410040265

    Article  MathSciNet  Google Scholar 

  9. N. A. Mikhailov, Math. Models Comput. Simul. 7 (5), 467–474 (2015). https://doi.org/10.1134/S2070048215050075

    Article  MathSciNet  Google Scholar 

  10. M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, and V. F. Tishkin, Comput. Math. Math. Phys. 58 (8), 1344–1353 (2018). https://doi.org/10.1134/S0965542518080122

    Article  MathSciNet  Google Scholar 

  11. O. A. Kovyrkina and V. V. Ostapenko, Vychisl. Tekhnol. 23 (2), 37–54 (2018).

    Google Scholar 

  12. H. Nessyahu and E. Tadmor, J. Comput. Phys. 87 (2), 408–463 (1990).

    Article  MathSciNet  Google Scholar 

  13. A. Kurganov and E. Tadmor, J. Comput. Phys. 160 (1), 241–282 (2000). https://doi.org/10.1006/jcph.2000.6459

    Article  MathSciNet  Google Scholar 

  14. N. A. Zyuzina, O. A. Kovyrkina, and V. V. Ostapenko, Dokl. Math. 98 (2), 506–510 (2018). https://doi.org/10.1134/S1064562418060315

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 16-11-10033.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. A. Kovyrkina or V. V. Ostapenko.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovyrkina, O.A., Ostapenko, V.V. Accuracy of MUSCL-Type Schemes in Shock Wave Calculations. Dokl. Math. 101, 209–213 (2020). https://doi.org/10.1134/S1064562420030126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064562420030126

Keywords

Navigation