Skip to main content
Log in

Effect of functionalized multiwalled carbon nanotubes on the feasibility of fabrication of composite glass fiber reinforced plastic rebars

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The effect of COOH-functionalized multiwalled carbon nanotubes on the temperature–velocity conditions of the fabrication of composite glass fiber reinforced plastic rebars (so-called needletrusion) used in building was studied. EPIKOTE 862 epoxy oligomer (Bisphenol F diglycidyl ether) in combination with EPICUREW curing agent (aromatic diamine) in 100 : 26.4 ratio was used as binder. The use of functionalized multiwalled carbon nanotubes as additives to the unmodified epoxy binder for fabrication of composite materials by needletrusion allows production of high-quality items with the required characteristics without loss in the production capacity. It is preferable to introduce nanotubes in an amount of no more than 0.2 wt %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okoro, C.U., Hossain, M.K., Hosur, M.V., and Jeelani, S., J. Eng. Mater. Technol., 2011, vol. 133, no. 4, pp. 131–134.

    Article  Google Scholar 

  2. Gojny, F.H., Nastalczyk, J., Roslaniec, Z., and Schulte, K., Chem. Phys. Lett., 2003, vol. 370, nos. 5–6, pp. 820–824.

    Article  CAS  Google Scholar 

  3. Hosur, M., Barua, R., Zainuddin, S., et al., J. Appl. Polym. Sci., 2012, vol. 127, no. 6, pp. 4211–4224.

    Article  Google Scholar 

  4. Thostenson, T.-W. and Chou, E.T., J. Phys. D: Appl. Phys., 2002, vol. 35, no. 16, pp. L77–L80.

    Article  CAS  Google Scholar 

  5. Hosur, M., Barua, R., Zainuddin, S., et al., Polym. Polym. Compos., 2012, vol. 20, no. 6, pp. 505–518.

    Google Scholar 

  6. Benmokrane, B. and Masmoudi, R., Abstracts of Papers, 2nd Int. Conf.: Advanced Composite Materials in Bridges and Structures, Canadian Society for Civil Engineering, 1996.

    Google Scholar 

  7. Puglia, D., Valentini, L., and Kenny, J.M., J. Appl. Polym. Sci., 2003, vol. 88, pp. 452–458.

    Article  CAS  Google Scholar 

  8. Valentini, L., Armentano, I., Puglia, D., and Kenny, J.M., Carbon, 2004, vol. 42, pp. 323–329.

    Article  CAS  Google Scholar 

  9. Zhou, T., Wangaand, X., and Wang, T., Polym. Int., 2009, vol. 58, pp. 445–452.

    Article  CAS  Google Scholar 

  10. Wu, J. and Chung, D.D.L., Carbon, 2004, vol. 42, pp. 3003–3042.

    Article  Google Scholar 

  11. Xie, H., Liu, B., Yuan, Z., et al., J. Polym Sci., Part B: Polym. Phys., 2004, vol. 42, pp. 3701–3712.

    Article  CAS  Google Scholar 

  12. Puglia, D., Valentini, L., Armentano, I., and Kenny, J.M., Diamond Relat. Mater., 2003, vol. 12, pp. 827–832.

    Article  CAS  Google Scholar 

  13. Visco, A., Calabrese, L., and Milone, C., J. Reinforced Plast. Compos., 2009, vol. 28, pp. 937–949.

    Article  CAS  Google Scholar 

  14. Qiu, S.L., Wang, C.S., Wang, Y.T., et al., eXPRESS Polym. Lett., 2011, vol. 5, no. 9, pp. 809–818.

    Article  CAS  Google Scholar 

  15. Tao, K., Yang, S., Grunlan, J.C., et al., J. Appl. Polym. Sci., 2006, vol. 102, no. 6, pp. 5248–5254.

    Article  CAS  Google Scholar 

  16. Abdalla, M., Dean, P., Robinson, D., and Nyairo, E., Polymer, 2008, vol. 49, no. 15, pp. 3310–3317.

    Article  CAS  Google Scholar 

  17. Zhou, T., Wang, X., Liu, X., and Xiong, D., Carbon, 2009, vol. 47, no. 4, pp. 1112–1118.

    Article  CAS  Google Scholar 

  18. Yang, K., Gu, M., Jin, Y., et al., Compos. Part A: Appl. Sci. Manufact., 2008, vol. 39, no. 10, pp. 1670–1678.

    Article  Google Scholar 

  19. Jahan, N., Narteh, A., Hosur, M., et al., Open J. Compos. Mater., 2013, vol. 3, no. 2A, pp. 40–47.

    Article  CAS  Google Scholar 

  20. Kablov. E.N., Kondrashov, S.V., and Yurkov, G.Yu., Ross. Nanotekhnol., 2013, vol. 8, nos. 3–4, pp. 28–46.

    Google Scholar 

  21. Kai, Y. and Mingyuan, G., Polym. J., 2009, vol. 41, no. 9, pp. 752–763.

    Article  Google Scholar 

  22. Kranovskii, A.N. and Kazakov, I.A., Diz. Mater. Nanotekhnol., 2015, no. 5 (40), pp. 35–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Krasnovskii.

Additional information

Original Russian Text © I.A. Kazakov, A.N. Krasnovskii, 2016, published in Zhurnal Prikladnoi Khimii, 2016, Vol. 89, No. 8, pp. 1062−1070.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazakov, I.A., Krasnovskii, A.N. Effect of functionalized multiwalled carbon nanotubes on the feasibility of fabrication of composite glass fiber reinforced plastic rebars. Russ J Appl Chem 89, 1309–1316 (2016). https://doi.org/10.1134/S1070427216080152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427216080152

Navigation