Skip to main content
Log in

Ethylene to Propylene over Zeolite ZSM-5: Improved Catalyst Performance by Treatment with CuO

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In this paper, the ZSM-5 zeolite base is used to produce light olefins in the process of converting ethylene to propylene, as well as copper oxide to improve the catalyst. After loading the copper oxide by inoculation, the modified catalyst was investigated for accurate determination of the specification by XRD, SEM, BET, and FTIR analyzes. The activity of this catalyst was evaluated in the process of ethylene to propylene conversion in a constant reactor under operational conditions (temperature 400°C, pressure 1 atm, and feed flow rate of 0.5 cc min−1 of pure ethylene), which also shows the results of tests of catalyst activity evaluation The modified catalyst of selectivity of ethylene and propylene will increase as the temperature rises and the maximum selectivity table at 400°C will be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noyen, J.V., Wilde, A.D., Schroeven, M., et al., Int. J. Appl. Ceramic Technology, 2012, vol. 9, pp. 902–910.

    Article  CAS  Google Scholar 

  2. Narula, C.K., Daw, C.S., Hoard, J.W., et al., Int. J. Appl. Ceramic Technology, 2005, vol. 2, pp. 452–466.

    Article  CAS  Google Scholar 

  3. Singh, R.N., Int. J. Appl. Ceramic Technology, 2007, vol. 4, pp. 134–144.

    Article  CAS  Google Scholar 

  4. Aghaei, E. and Haghighi, M., Microporous Mesoporous Mater., 2014, vol. 196, pp. 179–190.

    Article  CAS  Google Scholar 

  5. Amereh, M., Haghighi, M., Estifaee, P., Arabian J. Chem., (In Press).

  6. Estifaee, P., Haghighi, M., Babaluo, A., et al., J. Power Sources, 2015, vol. 257, pp. 364–373.

    Article  CAS  Google Scholar 

  7. Fathi, S., Sohrabi, M., and Falamaki, C., Fuel, 2014, vol. 116, pp. 529–537.

    Article  CAS  Google Scholar 

  8. Rahemi, N., Haghighi, M., Babaluo, A., et al., Int. J. Energy Res., 2014, vol. 38, pp. 765–779.

    Article  CAS  Google Scholar 

  9. Brzozowski, R., Applied Catalysis A: General, 2004, vol. 27, pp. 215–218.

    Article  CAS  Google Scholar 

  10. Gauthier, C., Chiche, B., Finiels, A., et al., J. Molecular Catalysis, 1989, vol. 50, pp. 219–229.

    Article  CAS  Google Scholar 

  11. Walendziewski, J. and Trawczyn, J., Ind. & Eng. Chem. Res., 1996, vol. 35, pp. 3356–3361.

    Article  CAS  Google Scholar 

  12. Hathaway, P.E. and Davis, M.E., J. Catalysis, 1989, vol. 119, pp. 497–507.

    Article  CAS  Google Scholar 

  13. Sugi, Y., J. Chinese Chemical Soc., 2010, vol. 57, pp. 1–13.

    Article  CAS  Google Scholar 

  14. Bouvier, C., Buijs, W., Gascon, J., et al., J. Catalysis, 2010, vol. 270, pp. 60–66.

    Article  CAS  Google Scholar 

  15. Kamalakar, G., Ramakrishna, M., Kulkarni, S.J., et al., Microporous & Mesoporous Materials, 2000, 38, pp. 135–142.

    Article  CAS  Google Scholar 

  16. Kamalakar, G., Prasad, M.R., Kulkarni, S.J., et al., Microporous & Mesoporous Materials, 2002, vol. 52, pp. 151–158.

    Article  CAS  Google Scholar 

  17. Addiego, W.P., Brundage, K.R., Glose, C.R., in Corning Incorporated, 2005, New York: Corning, 244, 689 B2.

    Google Scholar 

  18. Campanati, M., Fornasari, G., and Vaccari, A., Catalysis Today, 2003, vol. 77, pp. 299–314.

    Article  CAS  Google Scholar 

  19. Nelson, H.C., Lussier, R.J., Still, M.E., Applied Catalysis, 1983, vol. 7, pp. 113–121.

    Article  CAS  Google Scholar 

  20. Bouvier, C., Reumkens, N., Buijs, W., J. Chromatography, A, 2009, vol. 1216, pp. 6410–6416.

    Article  CAS  Google Scholar 

  21. Wang, Y., Xu, L., Yu, Z., et al., Catalysis Communications, 2008, vol. 9, pp. 1982–1986.

    Article  CAS  Google Scholar 

  22. Zhang, K.F., J. Power Sources, 2006, vol. 162, pp. 1077–1081.

    Article  CAS  Google Scholar 

  23. Spahr, M.E., J. Electrochem. Soc., 1999, vol. 46, pp. 2780–2783.

    Article  Google Scholar 

  24. Cañzares, P., Lucas, A.D., Dorado, F., et al., Appl. Catal. A: Gen., 1998, p. 169.

  25. Donk, S.V., Janssen, A.H., Bitter, J.H., et al., Catal. Rev., 2003, p. 45.

  26. Leach, E. and Bruce, E., Industrial Catalysis, 1983, vol. 1, New York: Academic Press, Inc.

    Google Scholar 

  27. Jacobs, G. and Davis, B.H., In Catalysis, Spivey, J.J and Dooley, K.M., Eds., Cambridge, The Royal Society of Chemistry, 2007, p. 20.

    Google Scholar 

  28. Kianfar, E., Salimi, M., Pirouzfar, V., and Koohestani, B., Int. J. Appl. Ceramic Technology, 2017, vol. 15, no. 3, pp. 734–741.

    Article  CAS  Google Scholar 

  29. Kianfar, E., Salimi, M., Pirouzfar, V., and Koohestani, B., Int. J. Chem. React. Eng., B, vol. 16, no. 7, pp. 1–7.

  30. Kianfar, E., Salimi, M., Hajimirzaee, S., and Koohestani, B., Int. J. Chem. React. Eng., 2018, https://doi.org/10.1515/ijcre-2018-0127.

  31. Kianfara, E., Russ. J. Appl. Chem., 2018, vol. 91, no. 10, pp. 1710–1720.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Kianfar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kianfar, E. Ethylene to Propylene over Zeolite ZSM-5: Improved Catalyst Performance by Treatment with CuO. Russ J Appl Chem 92, 933–939 (2019). https://doi.org/10.1134/S1070427219070085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219070085

Keywords

Navigation