Skip to main content
Log in

Adsorption of 1,2-Dichlorobenzene on a Carbon Nanomaterial Prepared by Decomposition of 1,2-Dichloroethane on Nickel Alloys

  • Sorption and Ion Exchange Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Concept of complex processing of chlorinated hydrocarbons, involving catalytic decomposition of 1,2-dichloroethane on Ni–M alloys to obtain a carbon nanomaterial (CNM) showing high performance in adsorption treatment of water to remove 1,2-dichlorobenzene, was presented. A series of finely dispersed Ni–Pd (5 wt %) and Ni–Mo (5 wt %) alloys were synthesized and studied. The samples were studied as catalysts in decomposition of C2H4Cl2 vapor at 600°С to obtain a carbon nanomaterial. The addition of 5 wt % second metal leads to an increase in the yield of the carbon nanomaterial from 20.1 to 25.4 (Ni–Pd) and 31.8 gCNM g–1cat (Ni–Mo). Analysis by electron microscopy and Raman spectroscopy shows that the carbon product consists of nanofibers of segmented structure, constituted by a poorly ordered graphite phase. The specific surface area of the carbon nanomaterial is 230–280 m2 g–1. The CNM/Ni, CNM/Ni–Pd, and CNM/Ni–Mo samples obtained were tested as adsorbents for water treatment to remove dissolved 1,2-dichlorobenzene (с0 = 73–880 μM) in the batch mode. The 1,2-dichlorobenzene adsorption isotherms were constructed. The degree of filling of the carbon nanomaterial surface with the adsorbate at equilibrium is 43–47%, exceeding by a factor of more than 2 the utilization efficiency of AG-2000 activated carbon (SBET = 1230 m2 g–1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Muganlinskii, F.F., Treger, Yu.A., and Lyushin, M.M., Khimiya i tekhnologiya galogenorganicheskikh soedinenii (Chemistry and Technology of Halogenated Organic Compounds), Moscow: Khimiya, 1991.

    Google Scholar 

  2. Flid, M.R. and Treger, Yu.A., Vinilkhlorid: khimiya i tekhnologiya (Vinyl Chloride: Chemistry and Technology), Moscow: Kalvis, 2008, book 1.

    Google Scholar 

  3. Zhou, Y., Tigane, T., Li, X., Truu, M., Truu, J., and Mander, U., Water Res., 2013, vol. 47, no. 1, pp. 102–110. https://doi.org/10.1016/j.watres.2012.09.030

    Article  CAS  PubMed  Google Scholar 

  4. Yufit, S.S., Yady vokrug nas: Vyzov chelovechsetvu (Poisons around Us: a Challenge for Mankind), Moscow: Klassik Stil’, 2002.

    Google Scholar 

  5. Stockholm Convention on Persistent Organic Pollutants, ratified by Federal Law no. 164-FZ of June 27, 2011.

  6. Yalkowsky, S.H. and Yan, H., Handbook of Aqueous Solubility Data, CRC, 2003, pp. 205–206.

    Google Scholar 

  7. Pelech, R., Milchert, E., and Wrobel, R., J. Hazard. Mater., 2006, vol. 137, no. 3, pp. 1479–1487. https://doi.org/10.1016/j.jhazmat.2006.04.023

    Article  CAS  PubMed  Google Scholar 

  8. Kirsanov, M.P. and Shishkin, V.V., Foods Raw Mater., 2016, vol. 4, pp. 148–153. https://doi.org/10.21179/2308-4057-2016-1-148-153

    Article  CAS  Google Scholar 

  9. Mishakov, I.V., Chesnokov, V.V., Buyanov, R.A., and Chuvilin, A.L., React. Kinet. Catal. Lett., 2002, vol. 76, no. 2, pp. 361–367. https://doi.org/10.1023/A:1016504532177

    Article  CAS  Google Scholar 

  10. Bauman, Yu.I., Mishakov, I.V., Vedyagin, A.A., and Dmitriev, S.V., Catal. Ind., 2012, vol. 4, no. 4, pp. 261–266. https://doi.org/10.1134/S2070050412040034 

    Article  Google Scholar 

  11. Mishakov, I.V., Vedyagin, A.A., Bauman, Y.I., Shubin, Y.V., and Buyanov, R.A., in Carbon Nanofibers: Synthesis,Applications, and Performance, Nova Science, 2018, pp. 77–181.

    Google Scholar 

  12. Bauman, Y.I., Mishakov, I.V., Rudneva, Y.V., Plyusnin, P.E., Shubin, Y.V., Korneev, D.V., and Vedyagin, A.A., Ind. Eng. Chem. Res., 2019, vol. 58, no. 2, pp. 685–694. https://doi.org/10.1021/acs.iecr.8b02186

    Article  CAS  Google Scholar 

  13. Bauman, Y.I., Rudneva, Y.V., Mishakov, I.V., Plyusnin, P.E., Shubin, Y.V., Korneev, D.V., Stoyanovskii, V.O., Vedyagin, A.A., and Buyanov, R.A., Heliyon, 2019, vol. 5, ID e02428. https://doi.org/10.1016/j.heliyon.2019.e02428

    Article  Google Scholar 

  14. Rudnev, A.V., Lysakova, A.S., Plyusnin, P.E., Bauman, Yu.I., Shubin, Yu.V., Mishakov, I.V., Vedyagin, A.A., and Buyanov, R.A., Inorg. Mater., 2014, vol. 50, no. 6, pp. 566–571. https://doi.org/10.1134/S0020168514060156.

    Article  CAS  Google Scholar 

  15. Peng, X., Li, Y., Luan, Z., Di, Z., Wang, H., Tian, B., and Jia, Z., Chem. Phys. Lett., 2003, vol. 376, nos. 1–2, pp. 154–158. https://doi.org/10.1016/S0009-2614(03)00960-6

    Article  CAS  Google Scholar 

  16. Klyuchnikov, N.G., Rukovodstvo po neorganicheskomu sintezu (Guide to Inorganic Synthesis), Moscow: Khimiya, 1965.

    Google Scholar 

  17. Li, X. and Chen, G.-H., Mater. Lett., 2009, vol. 63, no. 11, pp. 930–932. https://doi.org/10.1016/j.matlet.2009.01.042

    Article  CAS  Google Scholar 

  18. Negrea, P., Sidea, F., Negrea, A., Lupa, L., Ciopec, M., and Muntean, C., Bul. Sti. Univ. Politeh. Timisoara, 2008, vol. 53, nos. 1–2, pp. 144–146.

    Google Scholar 

  19. Kazakova, M.A., Kuznetsov, V.L., Bokova-Sirosh, S.N., Krasnikov, D.V., Golubtsov, G.V., Romanenko, A.I., Prosvirin, I.P., Ishchenko, A.V., Orekhov, A.S., Chuvilin, A.L., and Obraztsova, E.D., Phys. Status Solidi B, 2018, vol. 255, p. 1700260. https://doi.org/10.1002/pssb.201700260

    Article  CAS  Google Scholar 

  20. Bayat, N., Rezaei, M., and Meshkani, F., Int. J. Hydrogen Energy, 2016, vol. 41, pp. 5494–5503. https://doi.org/10.1016/j.ijhydene.2016.01.134

    Article  CAS  Google Scholar 

  21. Grabke, H.J., Spiegel, M., and Zahs, A., Mater. Res., 2004, vol. 7, pp. 89–95. https://doi.org/10.1590/S1516-14392004000100013

    Article  CAS  Google Scholar 

  22. Chambers, A. and Baker, R.T.K., J. Phys. Chem. B, 1997, vol. 101, pp. 1621–1630. https://doi.org/10.1021/jp963031i

    Article  CAS  Google Scholar 

  23. Nemanich, R.J. and Solin, S.A., Phys. Rev. B, 1979, vol. 20, pp. 392–401. https://doi.org/10.1103/PhysRevB.20.392

    Article  CAS  Google Scholar 

  24. Tuinstra, F. and Koenig, J.L., J. Chem. Phys., 1970, vol. 53, pp. 1126–1130. https://doi.org/10.1063/1.1674108

    Article  CAS  Google Scholar 

  25. Ferrari, A.C. and Robertson, J., Phys. Rev. B, 2000, vol. 61, pp. 14095–14107. https://doi.org/10.1103/PhysRevB.61.14095

    Article  CAS  Google Scholar 

  26. Derylo-Marczewska, A., Marczewski, A.W., Winter, Sz., and Sternik, D., Appl. Surf. Sci., 2010, vol. 256, no. 17, pp. 5164–5170. https://doi.org/10.1016/j.apsusc.2009.12.085

    Article  CAS  Google Scholar 

  27. Oliveira, L.C.A., Rios, R.V.R.A., Fabris, J.D., Garg, V., Sapag, K., and Lago, R.M., Carbon, 2002, vol. 40, no. 12, pp. 2177–2183. https://doi.org/10.1016/S0008-6223(02)00076-3

    Article  CAS  Google Scholar 

  28. Derylo-Marczewska, A., Buczek, B., and Swiatkowski, A., Appl. Surf. Sci., 2011, vol. 257, pp. 9466–9472. https://doi.org/10.1016/j.apsusc.2011.06.036

    Article  CAS  Google Scholar 

  29. Kaneko, Y., Abe, M., and Ogino, K., Colloids Surf., 1989, vol. 37, pp. 211–222. https://doi.org/10.1016/0166-6622(89)80120-9

    Article  Google Scholar 

  30. Giles, C.H., MacEwan, T.H., Nakhwa, S.N., and Smith, D., J. Chem. Soc., 1960, vol. 111, pp. 3973–3993. https://doi.org/10.1016/j.ijhydene.2016.01.134

    Article  CAS  Google Scholar 

  31. Sule, M.N., Templeton, M.R., and Bond, T., Environ. Technol., 2015, vol. 37, no. 11, pp. 1382–1389. https://doi.org/10.1080/09593330.2015.1116610

    Article  CAS  PubMed  Google Scholar 

  32. Netskina, O.V., Komova, O.V., Tayban, E.S., Oderova, G.V., Mukha, S.A., Kuvshinov, G.G., and Simagina, V.I., Appl. Catal. A, 2013, vol. 467, pp. 386–393. https://doi.org/10.1016/j.apcata.2013.07.046

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.S. Smorygina for the spectrophotometric study of the 1,2-dichlorobenzene adsorption, to D.V. Korneev for the study of the carbon material samples by transmission electron microscopy, and to M.Yu. Tashlanov for technical support of the synthesis of the carbon nanomaterial.

Funding

The study was performed within the framework of government assignment no. 075-00268-20-02 (identifier: 0718-2020-0040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Bauman.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 12, pp. 1779–1789, December, 2020 https://doi.org/10.31857/S0044461820120099

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauman, Y.I., Netskina, O.V., Mukha, S.A. et al. Adsorption of 1,2-Dichlorobenzene on a Carbon Nanomaterial Prepared by Decomposition of 1,2-Dichloroethane on Nickel Alloys. Russ J Appl Chem 93, 1873–1882 (2020). https://doi.org/10.1134/S1070427220120095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220120095

Keywords:

Navigation