Skip to main content
Log in

Synthesis of monodispersed mesoporous spheres of submicron size amorphous silica

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

A technique has been developed for synthesis of submicron monodispersed mesoporous spheres of amorphous silica from an alcohol-water-ammonia mixture by means of tetraethoxysilane hydrolysis in the presence of hexadecyltrimethylammonium bromide. The mechanism of sphere formation from aggregates of close-packed surfactant cylindrical micelles coated by silica has been proposed. The specific surface area in the synthesized spheres is higher than 800 m2/g, whereas the pore volume and average diameter are equal to 0.63 cm3/g and 3 nm, respectively. The average size of particles is shown to decrease twice after the temperature of the synthesis is increased twice. According to the data of atomic force spectroscopy and dynamic light scattering, the average diameter of mesoporous spheres can be controllably varied in the range 300–1500 nm with a root-mean-square deviation of no more than 6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.S., and Beck, J.S., Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism, Nature (London), 1992, vol. 359, no. 6397.

  2. Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D, Chit, T.W.C., Olson, D.H., and Sheppard, E.W., A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates, J. Am. Chem. Soc., 1992, vol. 114, no. 27, pp. 10834–10843.

    Article  CAS  Google Scholar 

  3. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science (Washington), 1998, vol. 279, no. 5350, pp. 548–552.

    Article  CAS  Google Scholar 

  4. Pham, H.N. and Datye, A.K., Synthesis of Attrition-Resistant Heterogeneous Catalysts Using Templated Mesoporous Silica, US Patent no. 6548440 (April 15, 2003).

  5. Schluter, R.D. and Perry, L., Application of Mesoporous Molecular Sieves as Selective Smoke Filtration Additives, US Patent no. 2005/0268925 (December 8, 2005).

  6. Slowing, I.I., Trewyn, B.G., Giri, S., and Lin, V.S.-Y., Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications, Adv. Funct. Mater., 2007, vol. 17, no. 8, pp. 1225–1236.

    Article  CAS  Google Scholar 

  7. Yao, K., Zhu, Y., Wang, P., Yang, X., Cheng, P., and Lu, H., ENFET Glucose Biosensor Produced with Mesoporous Silica Microspheres, Mater. Sci. Eng., C, 2007, vol. 27, no. 4, pp. 736–740.

    Article  CAS  Google Scholar 

  8. Das, D.P., Parida, K.M., and Mishra, B.K., A Study on the Structural Properties of Mesoporous Silica Spheres, Mater. Lett., 2007, vol. 61, no. 18, pp. 3942–3935.

    Article  CAS  Google Scholar 

  9. Xia, Y., Gates, B., Yin, Y., and Lu, Y., Monodispersed Colloidal Spheres: Old Materials with New Applications, Adv. Mater. (Weinheim), 2000, vol. 12, no. 10, pp. 693–713.

    Article  CAS  Google Scholar 

  10. Rengarajan, R., Mittleman, D., Rich, C., and Colvin, V., Effect of Disorder on the Optical Properties of Colloidal Crystals, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2005, vol. 71, no. 1, p. 016 615.

    Article  Google Scholar 

  11. Yuliarto, B., Zhou, K., Yamada, T., Honmal, I., Katsumura, Y., and Ichihara, M., Effect of Tin Addition on Mesoporous Silica Thin Film and Its Application for Surface Photovoltage NO2 Gas Sensor, Anal. Chem., 2004, vol. 76, no. 22, pp. 6719–6726.

    Article  CAS  Google Scholar 

  12. Palaniappan, A., Su, X., and Tay, F.E.H., Functionalized Mesoporous Silica Films for Gas Sensing Applications, J. Electroceram., 2006, vol. 16, no. 4, pp. 503–505.

    Article  CAS  Google Scholar 

  13. Boissiére, G., Kummel, M., Persin, M., Larbot, A., and Prouzet, E., Spherical MSU-1 Mesoporous Silica Particles Tuned for HPLC, Adv. Funct. Mater, 2001, vol. 11, no. 2, pp. 129–135.

    Article  Google Scholar 

  14. Gallis, K.W., Araujo, J.T., Duff, K.J., Moore, J.G., and Landry, C.C., The Use of Mesoporous Silica in Liquid Chromatography, Adv. Mater. (Weinheim), 1999, vol. 11, no. 17, pp. 1452–1455.

    Article  CAS  Google Scholar 

  15. Lee, M.N., Oh, S.-G., Moon, S.-K., and Bae, S.-Y., Preparation of Silica Particles Encapsulating Retinol Using O/W/O Multiple Emulsions, J. Colloid Interface Sci., 2001, vol. 240, no. 1, pp. 83–89.

    Article  CAS  Google Scholar 

  16. Yamada, Yu. and Yano, K., Synthesis of Monodispersed Super-Microporous/Mesoporous Silica Spheres with Diameters in the Low Submicron Range, Microporous Mesoporous Mater., 2006, vol. 93, nos. 1–3, pp. 190–198.

    Article  CAS  Google Scholar 

  17. Nakamura, T., Mizutani, M., Nozaki, K., Suzuki, N., and Yano, K., Formation Mechanism for Monodispersed Mesoporous Silica Spheres and Its Application to the Synthesis of Core/Shell Particles, J. Phys. Chem. C, 2007, vol. 111, no 3, pp. 1093–1100.

    Article  CAS  Google Scholar 

  18. Yano, K. and Fukushima, Y., Synthesis of Mono-Dispersed Mesoporous Silica Spheres with Highly Ordered Hexagonal Regularity Using Conventional Alkyltrimethylammonium Halide as a Surfactant, J. Mater. Chem., 2004, vol. 14, no. 10, pp. 1579–1584.

    Article  CAS  Google Scholar 

  19. Yano, K. and Fukushima, Y., Particle Size Control of Mono-Dispersed Super-Microporous Sillica Spheres, J. Mater. Chem., 2003, vol. 13, no. 10, pp. 2577–2581.

    Article  CAS  Google Scholar 

  20. Stöber, W., Fink, A., and Bohn, E., Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range, J. Colloid Interface Sci., 1968, vol. 26, pp. 62–69.

    Article  Google Scholar 

  21. Santamaria Razo, D.A., Pallavidino, L., Garrone, E., Geobaldo, F., Descrovi, E., Chiodoni, A., and Giorgis, F., A Version of Stöber Synthesis Enabling the Facile Prediction of Silica Nanosphere size for the Fabrication of Opal Photonic Crystals, J. Nanopart. Res., 2008, vol. 10, no. 7, pp. 1225–1229.

    Article  CAS  Google Scholar 

  22. Karpov, I.A., Samarov, E.K., Masalov, V.M., Bozhko, S.K., and Emel’chenko, G.A., The Intrinsic Structure of Spherical Particles of Opal, Fiz. Tverd. Tela (St. Petersburg), 2005, vol. 47, no. 2, pp. 334–338 [Phys. Solid State (Engl. transl.), 2005, vol. 47, no. 2, pp. 347–351].

    Google Scholar 

  23. Abramzon, A.A., Bocharov, V.V., Gaevoi, G.M., Maiofis, A.D., Maiofis, R.M., Matashkina, R.M., Skvirskii, L.Ya., Chistyakov, B.E., and Shul’ts, L.A., Poverkhnostno-aktivnye veshchestva. Spravochnik (Surface-Active Substances: A Handbook), Abramzon, A.A. and Gaevoi, G.M., Eds., Leningrad: Khimiya, 1979 [in Russian].

    Google Scholar 

  24. Lopéz, C., Materials Aspects of Photonic Crystals, Adv. Mater. (Weinheim), 2003, vol. 15, no 20, pp. 1679–1704.

    Article  Google Scholar 

  25. Lee, Y.G., Park, J.H., Oh, C., Oh, S.G., and Kim, Y.C., Preparation of Highly Monodispersed Hybrid Silica Spheres Using a One-Step Sol-Gel Reaction in Aqueous Solution, Langmuir, 2007, vol. 23, no. 22, pp. 10875–10878.

    Article  CAS  Google Scholar 

  26. Tan, B. and Rankin, S.E., Interfacial Alignment Mechanism of Forming Spherical Silica with Radially Oriented Nanopores, J. Phys. Chem. B, 2004, vol. 108, no. 43, pp. 20122–20129.

    Article  CAS  Google Scholar 

  27. Katiyar, A., Yadav, S., Smirniotis, P.G., and Pinto, N.G., Synthesis of Ordered Large Pore SBA-15 Spherical Particles for Adsorption of Biomolecules, J. Chromatogr., A, 2006, vol. 1122, nos. 1–2, pp. 13–20.

    Article  CAS  Google Scholar 

  28. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area, and Porosity, London: Academic, 1967.

    Google Scholar 

  29. Jaronec, M., Kruk, M., Olivier, J.P., and Koch, S., A New Method for the Accurate Size Analysis of MCM-41 and Other Silica-Based Mesoporous Materials, Stud. Surf. Sci. Catal., 2000, vol. 128, pp. 71–80.

    Article  Google Scholar 

  30. Barrett, E.P., Joyner, L.G., and Halenda, P.P., The Determination of Pore Volume and Area Distribution in Porous Substances: I. Computations from Nitrogen Isotherms, J. Am. Chem. Soc., 1951, vol. 73, no. 1, pp. 373–380.

    Article  CAS  Google Scholar 

  31. Broekhoff, J.C.P. and de Boer, J.H., Studies on Pore Systems in Catalysts: IX. Calculation of Pore Distribution from the Adsorption Branch of Nitrogen Sorption Isotherm in the Case of Open Cylindrical Pores B. Applications, J. Catal., 1967, vol. 9, no. 1, pp. 15–27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Trofimova.

Additional information

Original Russian Text © E.Yu. Trofimova, D.A. Kurdyukov, Yu.A. Kukushkina, M.A. Yagovkina, V.G. Golubev, 2011, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trofimova, E.Y., Kurdyukov, D.A., Kukushkina, Y.A. et al. Synthesis of monodispersed mesoporous spheres of submicron size amorphous silica. Glass Phys Chem 37, 378–384 (2011). https://doi.org/10.1134/S108765961104016X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S108765961104016X

Keywords

Navigation