Skip to main content
Log in

Two-dimensional numerical analysis of flow ionization in the RAM-C-II flight experiment

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The two-dimensional numerical analysis of experimental data on the degree of ionization of a compressed layer at the surface of a spacecraft shaped like a spherically blunted cone at a flight speed higher than 7 km/s at heights of 61–81 km is presented. The discussed data of a flight experiment were acquired within the framework of the RAM-C research project. A model of nonequilibrium physicochemical processes in a compressed layer behind the front of a leading shock wave, whose gas dynamics is described by Navier-Stokes equations, is considered. Different models of chemical kinetics were studied taking into account the processes of nonequilibrium dissociation and associative ionization. With the use of nonequilibrium dissociation models, the flight data on the concentration of electrons were adequately described not only under nearly equilibrium conditions but also under conditions without the thermalization of the internal degrees of freedom of the molecules of high-temperature air in a compressed layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Martin, Atmospheric Reentry: an Introduction to Its Science and Engineering (Mir, Moscow, 1969; PrenticeHall, Englewood Cliffs, N.J., 1966).

    Google Scholar 

  2. V. P. Agafonov, V. K. Vertushkin, A. A. Gladkov, and O. Yu. Polyanskii, Nonequilibrium Physicochemical Processes in Aerodynamics (Mashinostroenie, Moscow, 1972) [in Russian].

    Google Scholar 

  3. C. Park, Nonequilibrium Hypersonic Aerothermodynamics (Wiley, New York, 1990).

    Google Scholar 

  4. G. S. R. Sarma, Progr. Aerospace Sci. 36, 281 (2000).

    Article  Google Scholar 

  5. G. Candler, RTO-AVT/VKI Lecture Series on Non-Equilibrium Gas Dynamics from Physical Models to Hypersonic Flights (Von Karman Inst. Fluid Dynamics, 2008).

    Google Scholar 

  6. J. S. Shang and S. T. Surzhikov, Progr. Aerospace Sci. 53, 46 (2012).

    Article  Google Scholar 

  7. S. T. Surzhikov and M. P. Shuvalov, High Temp. 51, 408 (2013).

    Article  CAS  Google Scholar 

  8. S. T. Surzhikov, Russ. J. Phys. Chem. B 2, 800 (2008).

    Article  Google Scholar 

  9. C. Park, J. Thermophys. Heat Transfer 7, 385 (1993).

    Article  CAS  Google Scholar 

  10. C. E. Treanor and P. V. Marrone, Phys. Fluids 5, 1022 (1962).

    Article  CAS  Google Scholar 

  11. P. V. Marrone and C. E. Treanor, Phys. Fluids 6, 1215 (1963).

    Article  CAS  Google Scholar 

  12. N. M. Kuznetsov, Kinetics of Unimolecular Reactions (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  13. R. C. Millikan and D. R. White, J. Chem. Phys. 39, 3209 (1963).

    Article  CAS  Google Scholar 

  14. E. V. Stupochenko, S. A. Losev, and A. I. Osipov, Relaxation Processes in Shock Waves (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  15. O. A. Malkin, Relaxation Processes in Gas (Atomizdat, Moscow, 1971) [in Russian].

    Google Scholar 

  16. V. G. Shcherbak, Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 26 (1992).

    Google Scholar 

  17. A. B. Gorshkov, Izv. Akad. Nauk, Ser. Mekh. Zhidk. Gaza, No. 5, 180 (2009).

    Google Scholar 

  18. G. V. Candler and R. W. MacCormack, J. Thermophys. 5, 266 (1991).

    Article  CAS  Google Scholar 

  19. E. Josyula and W. F. Bailey, J. Spacecr. Rockets 40, 845 (2003).

    Article  CAS  Google Scholar 

  20. I. D. Boyd, Phys. Fluids 19, 096102-7 (2007).

    Google Scholar 

  21. S. T. Surzhikov and J. S. Shang, J. Spacecr. Rockets 49, 875 (2012).

    Article  Google Scholar 

  22. S. T. Surzhikov, J. Chem. Phys. 398, 56 (2012).

    CAS  Google Scholar 

  23. S. T. Surzhikov, AIAA Paper No. 2012-0146 (2012). doi:10.2514/6.2012-1146

    Google Scholar 

  24. S. T. Surzhikov and J. S. Shang, AIAA Paper No. 2013-0190 (2013).

    Google Scholar 

  25. N. D. Akey and A. E. Cross, NASA TN D-5615 (1970).

    Google Scholar 

  26. W. L. Grantham, NASA TN D-6062 (1970).

    Google Scholar 

  27. W. L. Jones, Jr. and A. E. Cross, NASA TN D-6617 (1972).

    Google Scholar 

  28. J. O. Hirschfelder, Ch. F. Curtiss and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954; Inostr. Liter., Moscow, 1961).

    Google Scholar 

  29. I. P. Ginzburg, Friction and Heat Transfer in a Moving Gas Mirture (Leningr. Gos. Univ., Leningrad, 1975) [in Russian].

    Google Scholar 

  30. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (Wiley, New York, 2007; Khimiya, Moscow, 1974).

    Google Scholar 

  31. C. R. Wilke, Chem. Eng. Progr. 46(2), 95 (1950).

    CAS  Google Scholar 

  32. N. A. Anfimov Izv. Akad. Nauk SSSR, Mekh. Mashinostr., No. 1, 25 (1962).

    Google Scholar 

  33. R. A. Svehla, NASA TR-R-132 (1962).

    Google Scholar 

  34. L. V. Gurvich, G. A. Bergman, I. V. Veits, et al., Thermodynamic Properties of Individual Substances, Ed. by V. P. Glushko (Nauka, Moscow, 1978) [in Russian].

  35. I. V. Staroverova and S. T. Surzhikov, Preprint No. 975 (Inst. Prikl. Mekh. RAN, Moscow, 2011).

    Google Scholar 

  36. M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., et al., J. Phys. Chem. Ref. Data 14(Suppl. 1) (1985).

    Google Scholar 

  37. S. A. Losev and N. A. Generalov, Sov. Phys. Dokl. 6, 1081 (1961).

    Google Scholar 

  38. J. R. Edwards and M.-S. Liou, AIAA J. 36, 1610 (1998).

    Article  CAS  Google Scholar 

  39. S. T. Surzhikov, Vestn. Mosk. Gos. Tekh. Univ. Baumana, Ser. Mashinostr. 2, 24 (2004).

    Google Scholar 

  40. A. A. Samarskii, Introduction to Numerical Methods (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  41. F. Grasso and G. Capano, J. Spacecr. Rockets 32, 217 (1995).

    Article  CAS  Google Scholar 

  42. J. Wilson, Phys. Fluids 9, 1913 (1966).

    Article  CAS  Google Scholar 

  43. S. C. Lin and J. Teare, Phys. Fluids 6, 355 (1963).

    Article  CAS  Google Scholar 

  44. M. N. Bortner, R 63SD63 (General Electric Space Sciences Laboratory, Missile and Space Devision, King of Prussia, Pensylvania, 1963).

  45. M. T. N. Bortner, T.N. 484 (NIST, Washington D.C., 1969).

  46. D. Hayes and W. Rotman, AIAA J. 11, 675 (1973).

    Article  Google Scholar 

  47. B. A. Zemlyanskii, V. V. Lunev, V. I. Vlasov, et al., Convective Heat Transfer of of Products of Rocket and Space, Guide for Designers (TsNIIMASh, Korolev, 2010) [in Russian].

    Google Scholar 

  48. R. Gupta, J. Yos, and R. Thompson, NASA TM 101528 (1989).

  49. F. G. Blottner, AIAA J. 7, 2281 (1969).

    Article  CAS  Google Scholar 

  50. K. Wray, ARS Progress in Astronautics and Rocketry (Acad. Press, New York, 1962), Vol. 7, p. 181.

    Google Scholar 

  51. F. G. Blottner, M. Johnson, and M. Ellis, Rep. SC-RR-70-754 (Sandia Laboratories, Albuquerque, NM, 1971).

  52. T. R. A. Bussing and S. Eberhardt, AIAA Paper 87-1292 (1987).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Surzhikov.

Additional information

Original Russian Text © S.T. Surzhikov, 2015, published in Khimicheskaya Fizika, 2015, Vol. 34, No. 2, pp. 24–42.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surzhikov, S.T. Two-dimensional numerical analysis of flow ionization in the RAM-C-II flight experiment. Russ. J. Phys. Chem. B 9, 69–86 (2015). https://doi.org/10.1134/S1990793115010200

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793115010200

Keywords

Navigation