Skip to main content
Log in

Nanostructured titanium alloys: New developments and application prospects

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The work presents the results of recent studies of nanostructured titanium and its alloy of the grade VT-6 (Ti-6Al-4V), in which we managed, using the methods of severe plastic deformation (SPD), to obtain ultra-fine-grained (UFG) states and form other nanostructured elements as nanodispersed particles of secondary phases, nonequilibrium grain boundaries, and dislocation substructures. Special attention was paid to equal-channel angular pressing (ECAP) and its modifications in combination with thermal and thermomechanical treatments, which enable one to obtain UFG alloys in the form of elongated rods. The peculiarities of grinding the microstructure in titanium and binary alloy VT-6 in dependence on the deformation technological setup have been established. The principles of nanostructuring to enhance strength, plasticity, and fatigue life have been suggested. The results of studies of the mechanical properties of the UFG VT-6 alloy have demonstrated the high efficiency of its application in the manufacture of articles with enhanced service parameters on the example of compressor blades of a gas-turbine engine (GTE). The possibilities of scaling the ECAP process to implement the commercial manufacture of the new material have been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Kolachev, I. S. Pol’kin, and V. D. Talalaev, Titanium Alloys Produced in Different Countries: Handbook (VILS, Moscow, 2000) [in Russian].

    Google Scholar 

  2. B. A. Kolachev, V. I. Elagin, and V. A. Livanov, Metal Science and Thermal Processing of Non-Ferrous Metals and Alloys (MISIS, Moscow, 2001) [in Russian].

    Google Scholar 

  3. A. I. Igolkin, “Titanium in medicine,” Titan, No. 1, 86 (1993).

    Google Scholar 

  4. S. G. Glazunov, S. F. Vazhenin, G. D. Zyukov-Batyrev, and Ya. L. Ratner, Titanium Application in National Economy (Tekhnika, Kiev, 1975) [in Russian].

    Google Scholar 

  5. H. Gleiter, “Nanocrystalline materials,” Progr. Mater. Sci. 33, 223–315 (1989).

    Article  Google Scholar 

  6. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Intensive Plastic Deformation (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  7. A. I. Gusev and A. A. Rempel’, Nanocrystalline Materials (Fizmatlit, Moscow, 2000) [in Russian].

    Google Scholar 

  8. R. A. Andrievskii and A. V. Ragulya, Nanostructured Materials (Academia, Moscow, 2005) [in Russian].

    Google Scholar 

  9. N. I. Noskova and R. R. Mulyukov, Submicrocrystalline and Nanocrystalline Metals and Alloys (Ural Branch RAS, Yekaterinburg, 2003) [in Russian].

    Google Scholar 

  10. M. I. Alymov, Powder Metallurgy for Nanocrystalline Materials (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  11. R. Z. Valiev, Yu. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer and Y. T. Zhu, “Producing bulk ultrafine-grained materials by severe plastic deformation,” J. Organ. Mater. 58,(4), 33–39 (2006).

    Google Scholar 

  12. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials: Manufacturing, Structure and Properties (Akademkniga, Moscow) [in Russian].

  13. R. Valiev and T. Langdon, “The art and science of tailoring materials by nanostructuring for advanced properties using SPD techniques,” Adv. Eng. Mater. 12(8), 677–691 (2010).

    Article  Google Scholar 

  14. A. A. Popov, I. Yu. Pyshmintsev, S. L. Demakov, A. G. Illarionov, T. C. Lowe, and R. Z. Valiev, “Structural and mechanical properties of nanocristalline titanium processed by severe deformation processing,” Scripta Mater. 37, 1089–1094 (1997).

    Article  Google Scholar 

  15. Yu. R. Kolobov, O. A. Kashin, E. E. Sagymbaev, E. F. Dudarev, L. S. Bushnev, G. P. Grabovetskaya, G. P. Pochivalova, N. V. Girsova, and V. V. Stolyarov, “Structure, mechanical and electrochemical properties of ultra-fine titanium,” Izv. Vyssh. Uchebn. Zaved. Fiz., No. 1, 77–85 (2000).

    Google Scholar 

  16. A. V. Sergueeva, V. V. Stolyarov, R. Z. Valiev, and A. K. Mukherjee, “Advanced mechanical properties of pure titanium with ultrafine grained structure,” Scripta Mater., No. 45, 747–752 (2001).

    Google Scholar 

  17. G. A. Salishchev, S. V. Zherebtsov, and R. M. Galeyev, “Evolution of microstructure and mechanical behavior of titanium, during warm multiple deformation,” in Proc. “Ultrafine Grained Materials II”, Ed. by T. Zhu, T. G. Langdon, R. S. Mishra, S. L. Semiatin, M. J. Saran, and T. C. Lowe (2002), pp. 123–131.

    Google Scholar 

  18. G. A. Salishchev, O. R. Valiakhmetov, R. M. Galeev, and S. P. Malysheva, “The way to form submicrocrystalline structure in titanium under plastic deformation and its effect onto mechanical properties,” Metally, No. 4, 86 (1996).

    Google Scholar 

  19. V. V. Stolyarov, L. O. Shestakova, A. I. Zharikov, V. V. Latysh, R. Z. Valiev, Y. T. Zhu, and T. C. Lowe, “Mechanical properties of nanostructured titanium alloys processed using severe plastic deformation,” in Proc. 9th Int. Conf. Titanium-99 (Nauka, 2001), Vol. 1, p. 466.

    Google Scholar 

  20. S. V. Zherebtsov, P. M. Galleev, O. R. Valiakhmetov, et al., “The way to form submicrocrystalline structure in titanium alloys by means of intensive plastic deformation,” Kuznechno-Shtamp. Proizv., No. 7, 17–22 (1999).

    Google Scholar 

  21. V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe, and R. Z. Valiev, “Influence of ECAP routes on the microstructure and properties of pure Ti,” Mater. Sci. Eng. A 299, 59 (2001).

    Article  Google Scholar 

  22. G. I. Raab and R. Z. Valiev, “Equal channel angular pressing according to “Konform” scheme for long-size nanostructured titanium half-products,” Kuznechno-Shtamp. Proizv. Obrab. Met. Davleniem, No. 1, 21–27 (2008).

    Google Scholar 

  23. R. Z. Valiev, G. I. Raab, D. V. Gunderov, and M. Yu. Murashkin, “Intensive plastic deformation methods for producing bulk nanostructured metals and alloys,” Kuznechno-Shtamp. Proizv., Obrab. Met. Davleniem, No. 11, 5–12 (2008).

    Google Scholar 

  24. V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe, and R. Z. Valiev, “Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling,” Mater. Sci. Eng. A 343, 43–50 (2003).

    Article  Google Scholar 

  25. G. Kh. Sadikova, V. V. Latysh, I. P. Semenova, and R. Z. Valiev, “Effect of intensive plastic deformation and thermomechanical processing onto titanium structure and properties,” Metalloved. Term. Obrab. Met., No. 11(605), 31–34 (2005).

    Google Scholar 

  26. I. P. Semenova, A. V. Polyakov, G. I. Raab, T. C. Lowe, and R. Z. Valiev, “Enhanced fatigue properties of ultrafine-grained Ti rods processed by ECAP-Conform November,” J. Mater. Sci. 47(22), 7777–7781 (2012).

    Article  Google Scholar 

  27. S. Zherebtsov, G. Salishchev, R. Galeyev, and K. Maekawa, “Mechanical properties of Ti-6Al-4V titanium alloy with submicrocrystalline structure produced by severe plastic deformation,” Mater. Trans. 46(9), 2020–2025 (2005).

    Article  Google Scholar 

  28. L. R. Saitova, H. W. Hoeppel, M. Goeken, I. P. Semenova, and R. Z. Valiev, “Cyclic deformation behavior and fatigue lives of ultrafine-grained Ti-6Al-4V ELI alloy for medical use,” Int. J. Fatigue, No. 31, 322–331 (2009).

    Google Scholar 

  29. I. P. Semenova, “Strength and increased fatigue properties of ultra-fine titanium half-products produced by means of intensive plastic deformation,” Metally, No. 5, 87–94 (2010).

    Google Scholar 

  30. N. A. Amirkhanova, R. Z. Valiev, E. Yu. Chernyaeva, E. B. Yakushina, and I. P. Semenova, “Corrosion behavior of titanium materials with ultrafine structure,” Metally, No. 3, 101–107 (2010).

    Google Scholar 

  31. Y. G. Ko, W. S. Jung, D. H. Shin, and C. S. Lee, “Effects of temperature and initial microstructure on the equal channel angular pressing of Ti-6Al-4V alloy,” Scripta Mater. 48, 197–202 (2003).

    Article  Google Scholar 

  32. I. P. Semenova, L. R. Saitova, G. I. Raab, and R. Z. Valiev, “Equal channel angular pressing influence on the Ti-6Al-4V alloy structure and mechanical behavior,” Mater. Sci. Eng. A 387–389, 805–808 (2004).

    Article  Google Scholar 

  33. L. R. Saitova, I. P. Semenova, G. I. Raab, and R. Z. Valiev, “Intensive plastic deformation effect onto mechanical behavior and structure of Ti-6Al-4V alloy,” Deform. Razrush. Mater., No. 3, 27–30 (2005).

    Google Scholar 

  34. I. P. Semenova, L. R. Saitova, R. K. Islamgaliev, T. V. Dotsenko, A. R. Kil’mametov, S. L. Demakov, and R. Z. Valiev, “Evolution of VT6 alloy structure under equal channel pressing,” Fiz. Met. Metalloved. 100(1), 1–8 (2005).

    Google Scholar 

  35. S. L. Demakov, O. A. Elkina, A. G. Illarionov, M. S. Karabanalov, A. A. Popov, I. P. Semenova, L. R. Saitova, and N. V. Shchetnikov, “Effect of rolling deformation conditions onto ultra-fine structure formation in two-phase alloy produced by intensive plastic deformation,” Fiz. Met. Metalloved. 105(6), 638–646 (2008).

    Google Scholar 

  36. S. V. Zherebtsov, G. A. Salishchev, R. M. Galeyev, O. R. Valiakhmetov, S. Yu. Mironov, and S. L. Semiatin, “Production of submicrocrystalline structure in large-scale Ti-6Al-4V billet by warm severe deformation processing,” Scripta Mater. 51, 1147–1151 (2004).

    Article  Google Scholar 

  37. G. A. Salishchev, R. M. Galeyev, O. R. Valiakhmetov, R. V. Safiulin, R. Y. Lutfullin, O. N. Senkov, F. H. Froes, and O. A. Kaibyshev, “Development of Ti-6Al-4V sheet with low temperature superplastic properties,” J. Mater. Processing Tech., No. 16, 265–268 (2001).

    Google Scholar 

  38. V. V. Latysh, G. H. Salimgareeva, I. P. Semenova, I. V. Kandarov, Y. T. Zhu, T. C. Lowe, and R. Z. Valiev, “Microstructure and properties of Ti rods produced by multi-step SPD,” Mater. Sci. Forum 503–504, 763–768 (2006).

    Article  Google Scholar 

  39. E. B. Yakushina, I. P. Semenova, and R. Z. Valiev, “Nanostructured titanium for biomedical application,” Tsvetnye Metally, No. 7, 81–83 (2010).

    Google Scholar 

  40. R. Z. Valiev, I. P. Semenova, V. V. Latysh, A. V. Shcherbakov, and E. B. Yakushina, “Nanostructured titanium for biomedical applications: new developments and challenges for commercialization,” Nanotech. Russ. 3(9–10), 593 (2008).

    Article  Google Scholar 

  41. T. Zhu, Y. R. Kolobov, G. P. Grabovetskaya, V. V. Stolyarov, N. V. Girsova, and R. Z. Valiev, “Microstructure and mechanical properties of ultrafine-grained Ti foil processed by equal-channel angular pressing and cold rolling,” J. Mater. Res. 18(4), 1011–1016 (2003).

    Article  Google Scholar 

  42. L. R. Saitova, I. P. Semenova, G. I. Raab, and R. Z. Valiev, “The way to rise mechanical properties of Ti-6Al-4V alloy by using equal channel angular pressing and further plastic deformation,” Fiz. Tekhn. Vys. Davlenii 14(4), 19–24 (Donetsk, 2004).

    Google Scholar 

  43. I. P. Semenova, L. R. Saitova, G. I. Raab, A. I. Korshunov, Y. T. Zhu, T. C. Lowe, and R. Z. Valiev, “Microstructural features and mechanical properties of the Ti-6Al-4V ELI alloy processed by severe plastic deformation,” Mater. Sci. Forum 503–504, 757–762 (2006).

    Article  Google Scholar 

  44. I. P. Semenova, E. B. Yakushina, V. V. Nurgaleeva, and R. Z. Valiev, “Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties,” Int. Joint Mater. Res. (Form. Z. Metallk.) 100, 1691–1696 (2009).

    Article  Google Scholar 

  45. Y. T. Zhu and X. Z. Liao, “Nanostructured materials: retaining ductility,” Nature Mater. 3, 351 (2004).

    Article  Google Scholar 

  46. R. Z. Valiev, A. V. Sergueeva, and A. K. Mukherjee, “Effect annealing behavior of nanostructured SPD titanium,” Scripta Mater. 49, 669 (2003).

    Article  Google Scholar 

  47. I. P. Semenova, G. H. Salimgareeva, G. Da Costa, W. Lefebvre, and R. Z. Valiev, “Enhanced strength and ductility of ultra-fine grained Ti processed by severe plastic deformation,” Adv. Eng. Mater. 12(8), 803–807 (2010).

    Article  Google Scholar 

  48. A. Yu. Vinogradov and S. Hashimoto, “Fatigue of ultrafine materials produced by equal channel angular pressing,” Metally, No. 1, 51–62 (2004).

    Google Scholar 

  49. A. Y. Vinogradov, V. V. Stolyarov, S. Hashimoto, and R. Z. Valiev, “Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation,” Mater. Sci. Eng. A 318, 163–173 (2001).

    Article  Google Scholar 

  50. V. V. Stolyarov, I. V. Alexandrov, Yu. R. Kolobov, M. Zhu, Y. Zhu, and T. Lowe, Proc. 7th Int. Fatigue Congr. Fatigue’99 (Beijing, 1999), Vol. 3, pp. 1345–1351.

    Google Scholar 

  51. L. Kunz P. Lukas, and M. Sloboda, “Fatigue strength, microstructural stability and strain localization in ultrafine-grained copper,” Mater. Sci. Eng. A 424(1–2), 97–104 (2006).

    Google Scholar 

  52. M. Grabski, Fine-Structure Superplasticity in Metals (Silesian Press, Katowice 1973).

    Google Scholar 

  53. A. V. Sergueeva, V. V. Stolyarov, R. Z. Valiev, and A. K. Mukherjee, “Superplastic behavior of ultra-fine grained Ti-6Al-4V alloy,” Mater. Sci. Eng. A 323, 318–325 (2002).

    Article  Google Scholar 

  54. I. P. Semenova, L. R. Saitova, G. I. Raab, and R. Z. Valiev, “Superplasticity behavior of ultra-fine Ti-6Al-4V alloy produced by intensive plastic deformation,” Fiz. Tekhn. Vys. Davlenii 16(4), 84–89 (Donetsk, 2006).

    Google Scholar 

  55. A. V. Botkin, A. Shayakhmetov, I. P. Semenova, G. I. Raab, R. Z. Valiev, and S. P. Pavlinich, “The way to simulate and estimate analytically the isothermal stamping force parameters for blade made of VT6 alloy,” Kuznechno-Shtamp. Proizv. Obrab. Met. Davleniem, No. 11, 43–48 (2008).

    Google Scholar 

  56. I. P. Semenova, V. V. Polyakova, R. R. Valiev, G. I. Raab, and N. F. Izmailova, “Microstructure and properties of gas turbine engine compressor blades made by volumetric stamping from ultra-fine VT6 alloy,” Fiz. Tekhn. Vys. Davlenii, No. 4, 86–96 (2011).

    Google Scholar 

  57. F. Z. Utyashev and G. I. Raab, “Scale factor effect onto grain refining under intensive plastic deformation,” Kuznechno-Shtamp. Proizv., Obrab. Met. Davleniem, No. 11, 13–20 (2008).

    Google Scholar 

  58. G. I. Raab and F. Z. Utyashev, “Development of SPD technologies of production line for rod-shaped semi-products out of nanostructured titanium for medical application,” Mater. Sci. Forum, Nos. 667–669, 1159–1164 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Semenova.

Additional information

Original Russian Text © I.P. Semenova, G.I. Raab, R.Z. Valiev, 2014, published in Rossiiskie Nanotekhnologii, 2014, Vol. 9, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenova, I.P., Raab, G.I. & Valiev, R.Z. Nanostructured titanium alloys: New developments and application prospects. Nanotechnol Russia 9, 311–324 (2014). https://doi.org/10.1134/S199507801403015X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199507801403015X

Keywords

Navigation