Skip to main content
Log in

Investigation of Gas Oscillations in the Closed Tube with a Cone Tip

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Nonlinear gas oscillations in a homogeneous closed tube and in a tube with a cone tip near the resonating excitation frequency were studied. A good agreement is obtained between the gas amplitude-frequency characteristics and pressure epure of the analytical theory and numerical experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. L. K. Zarembo and V. A. Krasilnikov, Introduction to Nonlinear Acoustics (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  2. M. A. Ilgamov, R. G. Zaripov, R. G. Galiullin, and V. B. Repin, ‘‘Nonlinear oscillations of a gas in a tube,’’ Appl. Mech. Rev. 49, 137–154 (1996).

    Article  Google Scholar 

  3. H. Feng, Y. Peng, X. Zhang, and X. Li, ‘‘Influence of tube geometry on the performance of standing-wave acoustic resonators,’’ J. Acoust. Soc. Am. 49, 144–1443 (2018).

    Google Scholar 

  4. C. Daniels, J. Finkbeiner, B. Steinetz, X. Li, and G. Raman, ‘‘Nonlinear oscillations and flow of gas within closed and open conical resonators,’’ AIAA Paper No. 1603–1612 (2004).

  5. X. Li, J. Finkbeiner, G. Raman, C. Daniels, and B. M. Steinetz, ‘‘Optimized shapes of oscillating resonators for generating high-amplitude pressure waves,’’ J. Acoust. Soc. Am. 116, 2814–2821 (2004).

    Article  Google Scholar 

  6. L. Shaidullin and S. Fadeev, ‘‘Acoustic gas oscillations in a cubic resonator with a throat under small perturbations,’’ Appl. Acoust. 192, 108758 (2022).

    Article  Google Scholar 

  7. M. F. Hamilton, Y. A. Ilinskii, and E. A. Zabolotskaya, ‘‘Linear and nonlinear frequency shifts in acoustic resonators with varying cross sections,’’ J. Acoust. Soc. Am. 110, 109–119 (2001).

    Article  Google Scholar 

  8. M. Cervenka, M. Soltes, and M. Bednarik, ‘‘Optimal shaping of acoustic resonators for the generation of high-amplitude standing waves,’’ J. Acoust. Soc. Am. 136, 1003–1012 (2014).

    Article  Google Scholar 

  9. C. C. Lawrenson, B. Lipkens, T. S. Lucas, D. K. Perkins, and T. W. van Doren, ‘‘Measurements of macrosonic standing waves in oscillating closed cavities,’’ J. Acoust. Soc. Am. 104, 623–636 (1998).

    Article  Google Scholar 

  10. D. E. Amundsen, M. P. Mortell, and B. R. Seymour, ‘‘Resonant radial oscillations of an inhomogeneous gas in the frustum of a cone,’’ Zeitschr. Angew. Math. Phys. 66, 2647–2663 (2015).

    Article  MathSciNet  Google Scholar 

  11. M. P. Mortell and B. R. Seymour, ‘‘Nonlinear resonant oscillations in closed tubes of variable cross-section,’’ J. Fluid Mech. 519, 183–199 (2004).

    Article  MathSciNet  Google Scholar 

  12. Q. Min, ‘‘Generation of extremely nonlinear standing-wave field using loudspeaker-driven dissonant tube,’’ J. Acoust. Soc. Am. 143, 1472 (2018).

    Article  Google Scholar 

  13. Y.-D. Chun and Y.-H. Kim, ‘‘Numerical analysis for nonlinear resonant oscillations of gas in axisymmetric closed tubes,’’ J. Acoust. Soc. Am. 108, 2765–2774 (2000).

    Article  Google Scholar 

  14. C. Luo, X. Y. Huang, and N. T. Nguyen, ‘‘Effect of resonator dimensions on nonlinear standing waves,’’ J. Acoust. Soc. Am. 117, 96–103 (2005).

    Article  Google Scholar 

  15. T. Kar and M. L. Munjal, ‘‘Analysis and design of conical concentric tube resonators,’’ J. Acoust. Soc. Am. 116, 74 (2004).

    Article  Google Scholar 

  16. D. T. Blackstock, Fundamentals of Physical Acoustics (Wiley Interscience, United States, 2000).

    Google Scholar 

  17. L. D. Landau and E. M. Lifshits, Fluid Mechanics, 2nd ed. (Butterworth-Heinemann, UK, 1987).

    MATH  Google Scholar 

  18. O. V. Rudenko and S. I. Soluyan, Theoretical Foundations of Nonlinear Acoustics (Consultants Bureau, New York, 1977).

    Book  Google Scholar 

  19. R. G. Galiullin, A. Z. Murzakhanova, and I. P. Revva, ‘‘The absorption effect on nonlinear gas oscillations in a half-opened tube,’’ Sov. Phys. Acoust. 36, 545 (1990).

    Google Scholar 

  20. L. A. Tkachenko and S. A. Fadeev, ‘‘Generation of higher harmonics for resonance oscillations in an open-ended pipe,’’ Acoust. Phys. 63, 7–13 (2017).

    Article  Google Scholar 

  21. E. Skudrzyk, Foundations of Acoustics Basic. Mathematics and Basic Acoustics (Springer, Vienna, 1971).

    Book  Google Scholar 

Download references

Funding

Numerical study of gas oscillations in the closed tube with a cone tip has been supported by the Kazan Federal University Strategic Academic Leadership Program (‘‘PRIORITY-2030’’). Analytical calculation of gas oscillations taking into consideration the reduced length of the tube was performed by L.A.T., L.R.S., S.A.F. within the frameworks of the government assignment for FRC Kazan Scientific Center of RAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. A. Gubaidullin, L. A. Tkachenko, L. R. Shaidullin or S. A. Fadeev.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubaidullin, D.A., Tkachenko, L.A., Shaidullin, L.R. et al. Investigation of Gas Oscillations in the Closed Tube with a Cone Tip. Lobachevskii J Math 43, 1116–1121 (2022). https://doi.org/10.1134/S1995080222080157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222080157

Keywords:

Navigation