Skip to main content
Log in

A Porous Structure of Nanofiber Electrospun Polyacrylonitrile-Based Materials: a Standard Contact Porosimetry Study

  • INVESTIGATION METHODS FOR PHYSICOCHEMICAL SYSTEMS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The formation regularities and quantitative porosity characteristics of nanofibrous electrospun composite materials based on polyacrylonitrile and its mixtures with polyvinylpyrrolidone and commercially available Vulcan® XC72 or Ketjenblack® EC-600 carbon blacks were studied by standard contact porosimetry. It was shown that a significant increase in the total specific surface area could be achieved due to an increase in the temperature of oxidative warming up of mats from 250 to 330°C followed by vacuum pyrolysis at 900–1000°C. Such carbon materials, after deposition of nanocrystalline platinum onto them, can be used as gas-diffusion electrodes in an intermediate temperature hydrogen–air fuel cell on a polybenzimidazole membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Bagotsky, V.S., Fuel Cells: Problems and Solutions, New York: John Wiley and Sons, 2009.

    Google Scholar 

  2. Gottesfeld, S. and Zawodzinski, T.A., in Advances in Electrochemical Sciences and Engineering, Alkire, R.C., Gericher, H., Kolb, D.M., and Tobias, C.W., Eds., Weinheim: Wiley-VCH, 1997, vol. 5, p. 195.

    Google Scholar 

  3. Costamagna, P. and Srinivasan, S., J. Power Sources, 2001, vol. 102, p. 242.

    Article  Google Scholar 

  4. Mehta, V. and Cooper, J.S., J. Power Sources, 2003, vol. 114, p. 32.

    Article  Google Scholar 

  5. Shao, Y., Yin, G., Wang, Z., and Gao, Y., J. Power Sources, 2007, vol. 167, p. 235.

    Article  Google Scholar 

  6. Mader, J., Xiao, L., Schmidt, T.J., and Benicewicz, B.C., Adv. Polym. Sci., 2008, vol. 216, p 63.

    Google Scholar 

  7. Peinemann, K.V. and Nunes, S.P., Membranes for Energy Conversion, Weinheim: Wiley-VCH, 2008, vol. 2.

    Google Scholar 

  8. Ponomarev, I.I., Ponomarev, Iv.I., Filatov, I.Yu., et al., Dokl. Phys. Chem., 2013, vol. 448, p. 23.

    Article  Google Scholar 

  9. Ponomarev, I.I., Skupov, K.M., Razorenov, D.Yu., et al., Russ. J. Electrochem., 2016, vol. 52, p. 735.

    Article  Google Scholar 

  10. Skupov, K.M., Ponomarev, I.I., Razorenov, D.Yu., Russ. J. Electrochem., 2017, vol. 53, p. 728.

    Article  Google Scholar 

  11. Konkin, A.A., Termo-, zharostoikie i negoryuchie volokna (Thermo-Resistan, Heat-Resistant, and Non-Combustible Fibers), Moscow: Khimiya, 1978.

  12. Dong, Z., Kennedy, S.J., and Wu, Y., J. Power Sources, 2011, vol. 196, p. 4886.

    Article  Google Scholar 

  13. Tenchurin, T.Kh., Krasheninnikov, S.N., Orekhov, A.S., et al., Fibre Chem., 2014, vol. 46, p. 151.

    Article  Google Scholar 

  14. Ignaki, M., Yang, Y., and Kang, F., Adv. Mater., 2012, vol. 24, p. 2547.

    Article  Google Scholar 

  15. Burger, C., Hsiao, B.S., and Chu, B., Annu. Rev. Mater. Res., 2006, vol. 36, p. 333.

    Article  Google Scholar 

  16. Zhang, B., Kang, F., Tarascon, J.-M., and Kim, J.-K., Prog. Mater. Sci., 2016, vol. 76, p. 319.

    Article  Google Scholar 

  17. Rylkova, M.V., Bokova, E.S., Kovalenko, G.M., and Filatov, I.Yu., Fibre Chem., 2012, vol. 44, p. 146.

    Article  Google Scholar 

  18. Volfkovich, Yu.M., Sosenkin, V.E., and Bagotsky, V.S., J. Power Sources, 2010, vol. 195, p. 5429.

    Article  Google Scholar 

  19. Volfkovich, Yu.M. and Sosenkin, V.E., Russ. Chem. Rev., 2012, vol. 81, p. 936.

    Article  Google Scholar 

  20. Volfkovich, Yu.M., Filippov, A.N., and Bagotsky, V.S., Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology, London: Springer, 2014.

    Book  Google Scholar 

  21. Drake, C., Ind. Eng. Chem., 1949, vol. 1, p. 780.

    Article  Google Scholar 

  22. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, New York: Academic, 1967.

    Book  Google Scholar 

  23. Dubinin, M.M. and Plavnik, G.M., Carbon, 1968, vol. 6, p. 183.

    Article  Google Scholar 

  24. Miklos, S. and Pohl, A., Bergakademie, 1970, vol. 22, p. 97.

    Google Scholar 

  25. Swata, M.J. and Jansta, I., Collect. Czech. Chem. Commun., 1965. vol. 30, p. 2455.

    Article  Google Scholar 

  26. Miller, B. and Tyomkin, I., J. Colloid Interface Sci., 1994, vol. 162, p. 163.

    Article  Google Scholar 

  27. Watkins, D.S., Fuel Cell Systems, New York: Plenum, 1993.

    Google Scholar 

  28. Schlögl, R. and Schuring, H., Z. Elektrochem., 1961, vol. 10, p. 863.

    Google Scholar 

  29. Tersoff, J. and Hamann, D.R., Phys. Rev., 1985, vol. 31, p. 805.

    Article  Google Scholar 

  30. Bardeen, J., Phys. Rev. Lett., 1961, vol. 6, p. 57.

    Article  Google Scholar 

  31. Dietz, P., Hansma, P.K., and Inacker, O., J. Membr. Sci., 1992, vol. 65, p. 101.

    Article  Google Scholar 

  32. Volfkovich, Yu.M., Sosenkin, V.E., Nikolskaya, N.F., and Kulova, T.L., Russ. J. Electrochem., 2008, vol. 44, p. 278.

    Article  Google Scholar 

  33. Rouquerol, J., Baron, G., Denoyel, R., et al., Pure Appl. Chem., 2011, vol. 84, p. 107.

    Article  Google Scholar 

  34. Volfkovich, Yu.M., Bograchev, D.A., Mikhailin, A.A., and Bagotzky, V.S., J. Solid State Electrochem., 2014, vol. 18, p. 1351.

    Article  Google Scholar 

  35. Mikhaylova, A.A., Tusseeva, E.K., Mayorova, N.A., et al., Electrochim. Acta, 2011, vol. 56, pp. 3656–3665.

    Article  Google Scholar 

  36. Zhang, J., PEM Fuel Cell Electrocatalysts and Catalyst Layers. Fundamentals and Applications, London: Springer, 2008.

    Book  Google Scholar 

  37. Kondratenko, M.S., Ponomarev, I.I., Gallyamov, M.O., et al., Beilstein J. Nanotechnol., 2013, vol. 4, p. 481.

    Article  Google Scholar 

  38. Zhigalina, V.G., Zhigalina, O.M., Ponomarev, I.I., et al., CrystEngComm, 2017, vol. 19, p. 3792.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the Russian Foundation for Basic Research, project no. 14-29-04011_ofi_m. Elemental analysis was performed at the Center for Molecular Structure of the Institute of Organoelement Compounds of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Vol’fkovich.

Additional information

Translated by K. Utegenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vol’fkovich, Y.M., Ponomarev, I.I., Sosenkin, V.E. et al. A Porous Structure of Nanofiber Electrospun Polyacrylonitrile-Based Materials: a Standard Contact Porosimetry Study. Prot Met Phys Chem Surf 55, 195–202 (2019). https://doi.org/10.1134/S2070205119010258

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119010258

Keywords:

Navigation