Skip to main content
Log in

Effect of phonon focusing on Knudsen flow of phonon gas in single-crystal nanowires made of spintronics materials

  • Theory of Metals
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Effect of anisotropy of elastic energy on the phonon propagation in single-crystal nanowires made of Fe, Cu, MgO, InSb, and GaAs materials that are used to fabricate spintronics devices in the regime of the Knudsen flow of phonon gas has been studied. A new method of analyzing the focusing of quasi-transverse modes has been suggested, which made it possible to determine the average values of the densities of phonon states in the regions of focusing and defocusing slow and fast quasi-transverse modes. The effect of phonon focusing on the anisotropy of heat conductivity and lengths of the phonon free paths has been analyzed for all acoustic modes that exist in spintronics nanostructures. It has been shown that for all the nanowires investigated the angular dependences of the free paths of fast and slow transverse modes in the {100} and {110} planes correlate with the angular dependences of the densities of phonon states for these modes. Directions of the heat flux that ensure the maximum and minimum phonon heat conductivity in the nanowires have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93, 793–818 (2003).

    Article  Google Scholar 

  2. A. D. McConnell and K. E. Goodson, “Nanoscale thermal transport,” Ann. Rev. Heat Transfer 14, 129–168 (2005).

    Article  Google Scholar 

  3. D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, Fan. Shanhui, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport II,” J. Appl. Phys. Rev. 1, 011305 (2014).

    Article  Google Scholar 

  4. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, “Thermal conductivity of individual silicon nanowires,” Appl. Phys. Lett. 83, 2934–2936 (2003).

    Article  Google Scholar 

  5. H. J. Maris and S. Tamura, “Heat flow in nanostructures in the Casimir regime,” Phys. Rev. B: Condens. Matter Mater. Phys. 85, 054304 (2012).

    Article  Google Scholar 

  6. I. G. Kuleev, I. I. Kuleev, and S. M. Bakharev, “Phonon focusing and temperature dependences of the thermal conductivity of silicon nanowires,” J. Exp. Theor. Phys. 118, 253–265 (2014).

    Article  Google Scholar 

  7. I. G. Kuleyev, I. I. Kuleyev, and S. M. Bakharev, “Low-temperature anisotropy of the thermal conductivity of single-crystal nanofilms and nanowires,” J. Exp. Theor. Phys. 119, 460–472 (2014).

    Article  Google Scholar 

  8. M. N. Baibich, J. M. Broto, A. Fert, F. N. van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  Google Scholar 

  9. V. V. Ustinov, N. G. Bebenin, L. N. Romashev, V. I.Minin, M. A. Milyaev, A. R. Del, and A. V. Semerikov, “Magnetoresistance and magnetization of Fe/Cr(001) superlattices with noncollinear magnetic ordering,” Phys. Rev. B: Solid State 54, 15958–15966 (1996).

    Article  Google Scholar 

  10. H. Holloway and D. J. Kubinski, “Giant magnetoresistance in Co/Cu multilayers with Co layers of alternating thicknesses: Reduction of magnetoresistive hysteresis,” J. Appl. Phys. 79, 7090–7094 (1996).

    Article  Google Scholar 

  11. N. S. Bannikova, M. A. Milyaev, L. I. Naumova, V. V. Proglyado, T. P. Krinitsina, I. Yu. Kamenskii, and V. V. Ustinov, “Giant magnetoresistance of CoFe/Cu superlattices with the (Ni80Fe20)60Cr40 buffer layer,” Phys. Met. Metallogr. 116, 987–992 (2015).

    Article  Google Scholar 

  12. M. A. Milyaev, V. V. Proglyado, T. P. Krinitsina, N. S. Bannikova, and V. V. Ustinov, “Giant drop of magnetic hysteresis with decreasing thickness of Crbuffer layer of CoFe/Cu superlattices,” Solid State Phenom. 168–169, 303–306 (2011).

    Google Scholar 

  13. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, and B. Hughes, “Giant tunneling magnetoresistance at room temperature with MgO(100) tunnel barriers,” Nature Mater. 3, 862–867 (2004).

    Article  Google Scholar 

  14. S. Yuasa, A. Fukushima, Y. Suzuki, and K. Ando, “Giant room temperature magnetoresistance in single crystal Fe/MgO/Fe magnetic tunnel junctions,” Nature Mater. 3, 868–871 (2004).

    Article  Google Scholar 

  15. X. Lou, C. Adelmann, S. A. Cruker, E. S. Garlid, J. Zhang, K. S. M. Reddy, S. D. Flexner, C. J. Palmstrom, and P. A. Crowell, “Electrical detection of spin transport in lateral ferromagnet–semiconductor devices,” Nature Phys. 3, 197–202 (2007).

    Article  Google Scholar 

  16. N. A. Viglin, V. V. Ustinov, V. M. Tsvelikhovskaya, and T. N. Pavlov, “Electric injection and detection of spinpolarized electrons in lateral spin valves on ferromagnetic metal–semiconductor InSb heterojunctions,” JETP Lett. 101, 113–117 (2015).

    Article  Google Scholar 

  17. H. B. G. Casimir, “Note on the conduction of heat in crystals,” Physica A 5, 495–500 (1938).

    Google Scholar 

  18. A. K. McCurdy, H. J. Maris, and C. Elbaum, “Anisotropic heat conduction in cubic crystals in the boundary scattering regime,” Phys. Rev. B: Solid State 2, 4077–4083 (1970).

    Article  Google Scholar 

  19. J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Clarendon, Oxford, 1962; Inostrannaya Literatura, Moscow, 1962).

    Google Scholar 

  20. B. M. Mogilevskii and A. F. Chudnovskii, Heat Conductivity of Semiconductors (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  21. B. Taylor, H. J. Maris, and C. Elbaum, “Phonon focusing in solids,” Phys. Rev. Lett. 23, 416–419 (1969).

    Article  Google Scholar 

  22. H. J. Maris, “Enhancement of heat pulses in crystals due to elastic anisotropy,” J. Acoust. Soc. Am. 50, 812–818 (1971).

    Article  Google Scholar 

  23. J. P. Wolfe, Imaging Phonons Acoustic Wave Propagation in Solids (Cambridge Univ. Press, New York, 1998).

  24. I. I. Kuleyev, S. M. Bakharev, I. G. Kuleyev, and V. V. Ustinov, “Phonon focusing and temperature dependences of thermal conductivity of silicon nanofilms,” J. Exp. Theor. Phys. 120, 638–650 (2015).

    Article  Google Scholar 

  25. F. I. Fedorov, Theory of Elastic Waves in Crystals (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  26. B. Truel, C. Elbaum, and B. B. Chick, Ultrasonic Methods in Sold State Physics (Academic, New York, 1969).

    Google Scholar 

  27. I. G. Kuleyev and I. I. Kuleyev, “Elastic waves in cubic crystals with positive or negative anisotropy of secondorder elastic moduli,” Phys. Solid State 49, 437–444 (2007).

    Article  Google Scholar 

  28. J. A. Rayne and B. S. Chandrasekhar, “Elastic constants of iron from 4.2 to 300 K,” Phys. Rev. 122, 1714–1716 (1961).

    Article  Google Scholar 

  29. H. M. Ledbetter and E. R. Naimon, “Elastic properties of metals and alloys. II. Copper,” J. Phys. Chem. 3, 897–935 (1974).

    Google Scholar 

  30. I. I. Kuleyev, I. G. Kuleyev, S. M. Bakharev, and A. V. Inyushkin, “Relaxation times and mean free paths of phonons in the boundary scattering regime for silicon single crystals,” Phys. Solid State 55, 31–44 (2013).

    Article  Google Scholar 

  31. I. I. Kuleyev, I. G. Kuleyev, S. M. Bakharev, and A. V. Inyushkin, “Effect of phonon focusing on the temperature dependence of thermal conductivity of silicon,” Phys. Status Solidi B 251, 991–1000 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Kuleev.

Additional information

Original Russian Text © I.I. Kuleev, S.M. Bakharev, I.G. Kuleev, V.V. Ustinov, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 1, pp. 12–22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuleev, I.I., Bakharev, S.M., Kuleev, I.G. et al. Effect of phonon focusing on Knudsen flow of phonon gas in single-crystal nanowires made of spintronics materials. Phys. Metals Metallogr. 118, 10–20 (2017). https://doi.org/10.1134/S0031918X17010033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17010033

Keywords

Navigation