Skip to main content
Log in

Influence of the Size and Structural Factors on the Magnetism of Multilayer Films Based on 3d and 4f Metals

  • Electrical and Magnetic Properties
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This work has presented some data on the layer structuring of films of 3d and 4f metals and their alloys, which have potential for practical use in magnetic sensors. The decrease in the thickness of magnetic layers with this structuring entails natural worsening of the crystallinity and leads to a degradation of magnetic ordering. However, the manifestation of these tendencies depends to a great extent on the conditions of preparation, the composition, and the sequence of the deposition of the contacting layers in the multilayer structures. The combination of these factors makes it possible to realize an optimum composition and optimum structural states of the films, which in a number of cases lead to the appearance of new combinations of functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-K. Ma, Modern Theory of Critical Phenomena (Benjamin, New York, 1976).

    Google Scholar 

  2. F. Y. Wu, “The Potts Model,” Rev. Mod. Phys. 54, 235–268 (1982).

    Article  Google Scholar 

  3. Y. Li and K. Baberschke, “Dimensional Crossover in Ultrathin Ni(111) Films on W(110),” Phys. Rev. Lett. 68, 1208–1211 (1992).

    Article  CAS  Google Scholar 

  4. W. Durr, M. Taborelli, O. Paul, R. Germar, W. Gudat, D. Pescia, M. Landolt, “Magnetic Phase Transition in Two-Dimensional Ultrathin Fe Films on Au(100),” Phys. Rev. Lett. 62, 206–209 (1989).

    Article  CAS  Google Scholar 

  5. C. A. Ballentine, R. L. Fink, J. Araya-Pochet, and J. L. Erskine, Phys. Rev. 41, 2631 (1990).

    Article  CAS  Google Scholar 

  6. F. Huang, M. T. Kief, G. J. Mankey, and R. F. Willis, “Magnetism in the Few-Monolayers Limit: A Surface Magneto-Optic Kerr-Effect Study of the Magnetic Behavior of Ultrathin Films of Co, Ni, and Co–Ni Alloys on Cu(100) and Cu(111),” Phys. Rev. B: Condens. Matter 49, 3962–3971 (1994).

    Article  CAS  Google Scholar 

  7. S. T. Bramwell and C. W. Holdsworth, “Universality in Two-Dimensional Magnetic Systems,” J. Appl. Phys. 73, 6096–6098 (1993).

    Article  CAS  Google Scholar 

  8. F. J. Himpsel, J. E. Ortega, G. J. Mankey, and R. F. Willis, “Magnetic Nanostructures,” Adv. Phys. 47, 511–597 (1998).

    Article  CAS  Google Scholar 

  9. A. Taroni, S. T. Bramwell, and P. C. W. Holdsworth, “Universal Window for Two-Dimensional Critical Exponents,” J. Phys.: Condens. Matter 20, 275233 (2008).

    CAS  Google Scholar 

  10. C. A. F. Vaz, J. A. C. Bland, and G. Lauhoff, “Magnetism in Ultrathin Film Structures,” Rep. Prog. Phys. 71, 056501 (2008).

    Article  CAS  Google Scholar 

  11. T. S. Bramfeld, H. Won, and R. F. Willis, “Abrupt Dimensionality Crossover in Thin-Film Ferromagnets: Quantum Size Effect,” J. Appl. Phys. 107, 09E150 (2010).

    Article  CAS  Google Scholar 

  12. G. A. T. Allan, “Critical Temperatures of Ising Lattice Films,” Phys. Rev. B: Condens. Mater 1, 352–356 (1970).

    Article  Google Scholar 

  13. M. E. Fisher and M. N. Barber, “Scaling Theory for Finite-Size Effects in the Critical Region,” Phys. Rev. Lett. 28, 1516–1519 (1972).

    Article  Google Scholar 

  14. C. Domb, “Critical Temperature of Finite Systems in D Dimensions,” J. Phys. A 6, 1296–1305 (1973).

    Article  Google Scholar 

  15. D. S. Ritchie and M. E. Fisher, “Finite-Size and Surface Effects in Heisenberg Films,” Phys. Rev. B: 7, 480–494 (1973).

    Article  Google Scholar 

  16. A. Schmidt and T. Schneider, “Dimensional Crossover in the Layered xy-Model,” Z. Phys. B: Condens. Matter 87, 265–270 (1992).

    Article  Google Scholar 

  17. T. S. Bramfeld and R. F. Willis, “TemperatureDependent Crossover of Dimensionality in Ultrathin Nickel Films,” J. Appl. Phys. 103, 07C718 (2008).

    Article  CAS  Google Scholar 

  18. K. Chen, A. M. Ferrenberg, and D. P. Landau, “Static Critical Behavior of Three-Dimensional Classical Heisenberg Models: A High-Resolution Monte Carlo Study,” Phys. Rev. B: Condens. Mater 48, 3249– 3256 (1993).

    Article  CAS  Google Scholar 

  19. A. M. Ferrenberg and D. P. Landau, “Critical Behavior of the Three-Dimensional Ising Model: A HighResolution Monte Carlo Study,” Phys. Rev. B: Condens. Mater 44, 5081–5091 (1991).

    Article  CAS  Google Scholar 

  20. F. Huang, G. J. Mankey, M. T. Kief, and R. F. Willis, “Finite-Size Scaling Behavior of Ferromagnetic Thin Films,” J. Appl. Phys. 73, 6760–6762 (1993).

    Article  CAS  Google Scholar 

  21. Y. Liu, X. Ma, and L. Mei, “Magnetic Properties of Compositionally Modulated Fe-Si/Si Amorphous Films,” Phys. Rev. B: Condens. Mater 45, 10459– 10467 (1992).

    Article  CAS  Google Scholar 

  22. S. -K. Kim, J.-R. Jeong, J. B. Kortright, and S.-C. Shin, “Experimental Observation of Magnetically Dead Layers in Ni/Pt Multilayer Films,” Phys. Rev. B: Condens. Mater 64, 052406 (2001).

    Article  CAS  Google Scholar 

  23. F. Farle, K. Baberschke, U. Stetter, A. Aspelmeier, F. Gerhardter, “Thickness-Dependent Curie Temperature of Gd(0001)/W(110) and Its Dependence on the Growth Conditions,” Phys. Rev. B: Condens. Mater 47, 11571–11574 (1993).

    Article  CAS  Google Scholar 

  24. J. S. Jiang, D. Davidovic, D. H. Reich, and C. L. Chien, “Oscillatory Superconducting Transition Temperature in Nb/Gd Multilayers,” Phys. Rev. Lett. 74, 314–317 (1995).

    Article  CAS  Google Scholar 

  25. A. Horiguchi, T. Matsuda, and Y. Watanabe, “Size Effect and Temperature Dependence of Spin Conduction in Gd/SiN Ultrathin Film,” J. Appl. Phys. 87, 6603–6605 (2000).

    Article  CAS  Google Scholar 

  26. E. E. Fullerton, K. T. Riggs, C. H. Sowers, and S. D. Bader, “Suppression of Biquadratic Coupling in Fe/Cr(001) Superlattices Below the Néel Transition of Cr,” Phys. Rev. Lett. 75, 330–333 (1995).

    Article  CAS  Google Scholar 

  27. T. Ambrose and C. L. Chien, “Finite-Size Effects and Uncompensated Magnetization in Thin Antiferromagnetic CoO Layers,” Phys. Rev. Lett. 76, 1743–1746 (1996).

    Article  CAS  Google Scholar 

  28. E. Weschke, et al., “Finite-Size Effect on Magnetic Ordering Temperatures in Long-Period Antiferromagnets: Holmium Thin Films,” Phys. Rev. Lett. 93, 157204 (2004).

    Article  CAS  Google Scholar 

  29. R. F. Willis, T. S. Bramfeld, and K. R. Podolak, “Finite-Size Nanoscaling of the Critical Temperature of Ferromagnets with Variable Range of Spin Interactions,” J. Appl. Phys. 101, 09G119 (2007).

    Article  CAS  Google Scholar 

  30. M. Gajdzik, T. Trappmann, C. Sürgers, and H. Löhneysen, “Morphology and Magnetic Properties of Submonolayer Gd Films,” Phys. Rev. B: Condens. Mater 57, 3525–3530 (1998).

    Article  CAS  Google Scholar 

  31. M. S. Amazonas and J. Cabral Neto, J. Ricardo de Sousa J., “Influence of the Lattice Structure on the Curie Temperature of a Thin Quantum Spin 1/2 Heisenberg Film,” Phys. A (Amsterdam) 331, 198–206 (2004).

    Article  CAS  Google Scholar 

  32. C. S. Tian, D. Qian, D. Wu, et al., “Body-CenteredCubic Ni and Its Magnetic Properties,” Phys. Rev. Lett. 94, 137210 (2005).

    Article  CAS  Google Scholar 

  33. L. F. Yin, D. H. Wei, N. Lei, L. H. Zhou, C. S. Tian, G. S. Dong, X. F. Jin, L. P. Guo, Q. J. Jia, R. Q. Wu, “Magnetocrystalline Anisotropy in Permalloy Revisited,” Phys. Rev. Lett. 97, 067203 (2006).

    Article  CAS  Google Scholar 

  34. K. Amemiya and M. Sakamaki, “Temperature Dependence of Remanent Magnetization of Thin Films at the Interface To a Nonmagnetic Material: Cu/Ni/Cu(100),”. Phys Rev. B: Condens. Mater 88, 014401 (2013).

    Article  CAS  Google Scholar 

  35. C. C. Yang and Q. Jiang, “Size and Interface Effects on Critical Temperatures of Ferromagnetic, Ferroelectric and Superconductive Nanocrystals,” Acta Mater. 53, 3305–3311 (2005).

    Article  CAS  Google Scholar 

  36. P. Poulopoulos and K. Baberschke, “Magnetism in Thin Films,” J. Phys.: Condens. Matter 11, 9495–9515 (1999).

    CAS  Google Scholar 

  37. F. Wilhelm, U. Bovensiepen, A. Scherz, P. Poulopoulos, A. Ney, H. Wende, G. Ceballos, K. Baberschke, “Manipulation of the Curie Temperature and the Magnetic Moments of Ultrathin Ni and Co Films by Cu-Capping,” J. Magn. Magn. Mater. 222, 163–167 (2000).

    Article  CAS  Google Scholar 

  38. X. F. Cui, M. Zhao, and Q. Jiang, “Curie Transition Temperature of Ferromagnetic Low-Dimensional Metals,” Thin Solid Films 472, 328–333 (2005).

    Article  CAS  Google Scholar 

  39. A. V. Svalov, V. O. Vas’kovskiy, J. M. Barandiaran, K. G. Balymov, A. N. Sorokin, I. Orue, A. Larrañaga, N. N. Schegoleva, G. V. Kurlyandskaya, “Structure and Magnetic Properties of Gd/Ti Nanoscale Multilayers,” Solid State Phenom. 168–169, 281–284 (2011).

    Google Scholar 

  40. V. Franco and A. Conde, “Magnetic Refrigerants with Continuous Phase Transitions: Amorphous and Nanostructured Materials,” Scr. Mater. 67, 594–599 (2012).

    Article  CAS  Google Scholar 

  41. A. V. Svalov, V. V. Vas’kovskiy, K. G. Balymov, J. Alonso, M. L. Fdez-Gubieda, G. V. Kurlyandskaya, “Magnetic Properties and Magnetic Entropy Change in Gd/Ti Multilayers,” IEEE Trans. Magn. 50, 2302204 (2014).

    Google Scholar 

  42. K. A. Gschneidner, Jr. and V. K. Pecharsky, “Magnetocaloric Materials,” Ann. Rev. Mater. Sci. 30, 387– 429 (2000).

    Article  CAS  Google Scholar 

  43. A. Smaïli and R. Chahine, “Composite Materials for Ericsson-Like Magnetic Refrigeration Cycle,” J. Appl. Phys. 81, 824–829 (1997).

    Article  Google Scholar 

  44. V. K. Pecharsky and K. A. Gschneidner, “Jr. Magnetocaloric Effect from Indirect Measurements: Magnetization and Heat Capacity,” J. Appl. Phys. 86, 565–575 (1999).

    Article  CAS  Google Scholar 

  45. K. A. Gschneidner, Jr. and V. K. Pecharsky, “The Influence of Magnetic Field on the Thermal Properties of Solids,” Mater. Sci. Eng., A 287, 301–310 (2000).

    Article  Google Scholar 

  46. K. A. Gschneidner, Jr. and V. K. Pecharsky, “Thirty Years of Near Room Temperature Magnetic Cooling: Where We Are Today and Future Prospects,” Int. J. Refrig 31, 945–961 (2008).

    Article  Google Scholar 

  47. B. J. Kirby, J. W. Lau, D. W. Williams, C. A. Bauer, C. W. Miller, “Impact of Interfacial Magnetism on Magnetocaloric Properties of Thin Film Heterostructures,” J. Appl. Phys. 109, 063905–4 (2011).

    Article  CAS  Google Scholar 

  48. A. V. Svalov, V. O. Vas’kovskiy, J. M. Barandiaran, K. G. Balymov, I. Orue, G. V. Kurlyandskaya, “Structure and Magnetic Properties of Nanostructured GdTb Thin Films,” Phys. Status Solidi A 208, 2273–2276 (2011).

    Article  CAS  Google Scholar 

  49. V. Franco and A. Conde, “Scaling Laws for the Magnetocaloric Effect in Second Order Phase Transitions: From Physics to Applications for the Characterization of Materials,” Int. J. Refrig 33, 465–473 (2010).

    Article  CAS  Google Scholar 

  50. D. Doblas, L. M. Moreno-Ramírez, V. Franco, A. Conde, A. V. Svalov, G. V. Kurlyandskaya, Nanostructuring as a procedure to control the field dependence of the magnetocaloric effect. Mater. Design 114, 214–219 (2017).

    Article  CAS  Google Scholar 

  51. A. M. Mansanares, F. C. G. Gandra, M. E. Soffner, A. O. Guimarães, E. C. Silva, H. Vargas, and E. Marin, “Anisotropic Magnetocaloric Effect in Gadolinium Thin Films: Magnetization Measurements and Acoustic Detection,” J. Appl. Phys. 114, 163905 (2013).

    Article  CAS  Google Scholar 

  52. R. Niemann, O. Heczko, L. Schultz, and S. Fähler, “Metamagnetic Transitions and Magnetocaloric Effect in Epitaxial Ni–Co–Mn–In Films,” Appl. Phys. Lett. 97, 222507 (2010).

    Article  CAS  Google Scholar 

  53. V. O. Vas’kovskiy, A. V. Svalov, and G. V. Kurlyandskaya, “Magnetism in Rare Earth/Transition Metal Multilayers,” in Encyclopedia of Nanoscience and Nanotechnology, Ed. by H. S. Nalwa (American Scientific Publishers, Valencia, 2004), vol. 4, pp. 925– 947.

  54. A. V. Svalov, V. O. Vas’kovskiy, G. V. Kurlyandskaya, J. M. Barandiaran, I. Orue, N. N. Schegoleva, and A. N. Sorokin, “Structural Peculiarities and Magnetic Properties of Nanoscale Terbium in Tb/Ti and Tb/Si Multilayers,” Chin. Phys. Lett 23, 196–199 (2006).

    Article  CAS  Google Scholar 

  55. A. V. Svalov, V. O. Vas’kovskiy, G. V. Kurlyandskaya, J. M. Barandiaran, N. N. Schegoleva, and A. N. Sorokin, “Magnetic Behaviour of Tb/Si Nanoscale Multilayers with Small Thickness of Rare Earth Layers,” Chin. Phys. Lett 24, 1717–1719 (2007).

    Article  CAS  Google Scholar 

  56. A. V. Svalov, V. O. Vas’kovskii, K. G. Balymov, A. N. Sorokin, G. V. Kurlyandskaya, “Hysteretic Properties of Nanostructured Terbium Films,” Techn. Phys 59, 530–534 (2014).

    Article  CAS  Google Scholar 

  57. A. V. Svalov, V. O. Vas’kovskiy, N. N. Schegoleva, and G. V. Kurlyandskaya, “Effect of the Layer Thickness on the Magnetic Properties and Structure of Terbium in (Tb/Ti)N and (Tb/Si)N Multilayer Films,” Tech. Phys 50, 914–917 (2005).

    Article  CAS  Google Scholar 

  58. J. J. Hauser, “Spin-Glass Transition in Disordered Terbium,” Solid State Commun. 55, 163–166 (1985).

    Article  CAS  Google Scholar 

  59. N. B. Shevchenko, J. A. Christodoulides, and G. C. Hadjipanayis, “Preparation and Characterization of Dy Nanoparticles,” Appl. Phys. Lett. 74, 1478–1480 (1999).

    Article  CAS  Google Scholar 

  60. J. J. Hauser, “Spin-Glass Transition in Amorphous Tb–Si Films,” Phys. Rev. B: Condens. Mater 34, 3212–3215 (1986).

    Article  CAS  Google Scholar 

  61. M. Liu and F. Hellman, “Magnetic and Transport Properties of Amorphous Tb–Si Alloys Near the Metal-Insulator Transition,” Phys. Rev. B: Condens. Mater 67, 054401 (2003).

    Article  CAS  Google Scholar 

  62. A. Banerjee and A. K. Majumdar, “Electron Transport and Magnetic Studies of Cu 100 – x Mn x Binary Alloys,” Phys. Rev. B: Condens. Mater 46, 8958–8973 (1992).

    Article  CAS  Google Scholar 

  63. T. Bitoh, K. Ohba, M. Takamatsu, T. Shirane, and S. Chikazawa. Chikazawa, “Field-Cooled and Zero-Field-Cooled Magnetization of Superparamagnetic Fine Particles in Cu 97 Co 3 Alloy: Comparison with Spin-Glass Au 96 Fe 4 Alloy,” J. Phys. Soc. Jpn. 64, 1305–1310 (1995).

    Article  CAS  Google Scholar 

  64. G. Herzer, “Grain Size Dependence of Coercivity and Permeability in Nanocrystalline Ferromagnets,” Scr. Met. Mater 26, 1397–1402 (1990).

    CAS  Google Scholar 

  65. S. V. Vonsovsky, Magnetism (Nauka, Moscow, 1971; Wiley, New Yor, 1974).

    Google Scholar 

  66. J. Weissmüller, A. Michels, D. Michels, A. Wiedenmann, C. E. Krill III, H. M. Sauer, and B. Birringer, “Spin Structure of Nanocrystalline Terbium,” Phys. Rev. B: Condens. Mater 69, 054402 (2004).

    Article  CAS  Google Scholar 

  67. D. E. Hegland, S. Legvold, and F. H. Spedding, “Magnetization and Electrical Resistivity of Terbium Single Crystals,” Phys. Rev. 131, 158–162 (1963).

    Article  CAS  Google Scholar 

  68. R. R. Birss, G. J. Keeler, and C. H. Shepherd, “Temperature Dependence of the Magnetocrystalline Anisotropy Energy of Terbium in the Basal Plane,” J. Phys. F: Met. Phys. 7, 1669–1681 (1977).

    Article  CAS  Google Scholar 

  69. G. I. Frolov, “Magnetic Properties of 3d-Metal Nanocrystalline Films,” Tech. Phys 49, 909–915 (2004).

    Article  CAS  Google Scholar 

  70. I. A. Campbell, S. Senoussi, F. Varret, J. Teillet, and C. Hamzić. Hamzić, “Competing Ferromagnetic and SpinGlass Order in a AuFe Alloy,” Phys. Rev. Lett. 50, 1615–1618 (1983).

    Article  CAS  Google Scholar 

  71. A. E. Berkowitz, J. R. Mitchell, M. J. Carey, A. P. Young, S. Zhang, F. E. Spada, F. T. Parker, A. Hutten, and G. Thomas. Thomas, “Giant Magnetoresistance in Heterogeneous Cu–Co Alloys,” Phys. Rev. Lett. 68, 3745–3478 (1992).

    Article  CAS  Google Scholar 

  72. J. Q. Xiao, J. S. Jiang, and C. L. Chien, “Giant Magnetoresistance in Nonmultilayer Magnetic Systems,” Phys. Rev. Lett. 68, 3749–3752 (1992).

    Article  CAS  Google Scholar 

  73. A. Fert, “The Origin, Development and Future of Spintronics,” Nobel Lecture, December 8, 2007; Phys.-Usp. 51, 1336–1348 (2008).

    Google Scholar 

  74. F. E. Stanley, M. Perez, C. H. Marrows, S. Langridge, and B. J. Hickey, “Inverse Giant Magnetoresistance in Rare-Earth/Transition Metal Multilayers,” Europhys. Lett. 49, 528–533 (2000).

    Article  CAS  Google Scholar 

  75. F. Tsui, C. Uher, and C. P. Flynn, “Positive Giant Magnetoresistance in Dy/Sc Superlattices,” Phys. Rev. Lett. 72, 3084–3087 (1994).

    Article  CAS  Google Scholar 

  76. D. I. Brinkevich, M. G. Lukashevich, V. S. Prosolovich, D. A. Skripka, L. Yankovskii, “Effect of Rare-Earth Impurities on the Magnetoresistance of Single-Crystal Silicon,” Inorganic Mater 38, 637–639 (2002).

    Article  CAS  Google Scholar 

  77. A. V. Svalov, V. O. Vas’kovskiy, J. M. Barandiaran, I. Orue, A. N. Sorokin, and G. V. Kurlyandskaya, “Magnetoresistive Properties of Tb/Ti and Tb/Si Multilayers,” Solid State Phenom. 152–153, 237–240 (2009).

    Article  Google Scholar 

  78. A. V. Svalov, G. V. Kurlyandskaya, V. O. Vas’kovskiy, A. N. Sorokin, and D. Diercks, “Magnetoresistance in Nanostructured Tb/Ti and Tb/Si Multilayers,” J. A.pl. Phys. 109, 023914 (2011).

    Google Scholar 

  79. A. Fert, R. Asomoza, D. H. Sanchez, and D. Spanjaard, “Magnetotransport Properties of Noble Metals Containing Rare-Earth Impurities. I. Quadrupole Scattering by Rare-Earth Impurities in Gold,” Phys. Rev. B: Condens. Mater 16, 5040–5051 (1977).

    Article  CAS  Google Scholar 

  80. A. V. Svalov, V. O. Vas’kovskiy, J. M. Barandiaran, I. Orue, A. N. Sorokin, and G. V. Kurlyandskaya, “Magnetoresistive Properties of Gd/Ti Multilayers,” Solid State Phenom. 190, 137–140 (2012).

    Article  CAS  Google Scholar 

  81. A. Barthelemy, A. Fert, and A. Petroff, “Giant magnetoresistance in magnetic multilayers,” in Handbook of Magnetic Materials, Ed. by K. M. J. Bushow, Vol. 12 (North-Holland, Amsterdam, 1999), pp. 1–96.

  82. V. O. Vas’kovskii, A. A. Yuvchenko, V. N. Lepalovskii, N. N. Shchegoleva, and A. V. Svalov. Svalov, “Elements of the Granular State in Multilayered Co/Cu Films,” Phys. Met. Metallogr 93, 232–238 (2002).

    Google Scholar 

  83. J. C. Denardin, M. Knobel, L. S. Dorneles, and L. F. Schelp, “Structural, Magnetic and Transport Properties of Discontinuous Granular Multilayers,” J. Magn. Magn. Mater. 294, 206–212 (2005).

    Article  CAS  Google Scholar 

  84. S. Hashimoto and Y. J. Ochiai, “Co/Pt and Co/Pd Multilayers As Magneto-Optical Recording Materials,” J. Magn. Magn. Mater 88, 211–226 (1990).

    Article  CAS  Google Scholar 

  85. S. A. Nikitin, Magnetic Properties of Rare-Earth Metals and Alloys (MSU, Moscow, 1989) [in Russian].

    Google Scholar 

  86. V. O. Vas’kovskiy, A. V. Svalov, A. N. Sorokin, P. V. Krapivin, and A. V. Zinin. Zinin, “Effect of Heat Treatment on the Magnetic Compensation State of Amorphous Gd–Co and Layered Gd/Co Films,” J. Alloys Compd. 285, 238–241 (1999).

    Article  Google Scholar 

  87. P. J. Grundy, “Interfacial Properties in Co-Based Multilayer Films,” J. Alloys Compd. 326, 226–233 (2001).

    Article  CAS  Google Scholar 

  88. P. J. Grundy, J. M. Fallon, and H. J. Blythe, “Magnetic and Electrical Properties of Co/Si Multilayer Thin Films,” Phys. Rev. B: Condens. Mater 62, 9566–9574 (2000).

    Article  Google Scholar 

  89. J. Enkovaara, A. Ayuela, and R. M. Nieminen, “Interlayer Coupling in Co/Si Sandwich Structures,” Phys. Rev. B: Condens. Mater 62, 16018–16022 (2000).

    Article  CAS  Google Scholar 

  90. V. O. Vas’kovskiy, G. S. Patrin, D. A. Velikanov, A. V. Svalov, P. A. Savin, A. A. Yuvchenko, and N. N. Shchegoleva. Shchegoleva, “Magnetism of Co Layers in a Co/Si Multilayer Film,” Phys. Solid State 49, 302–307 (2007).

    Article  CAS  Google Scholar 

  91. V. O. Vas’kovskiy, G. S. Patrin, D. A. Velikanov, A. V. Svalov, and N. N. Shchegoleva. Shchegoleva, “Spontaneous Magnetization and Characteristics of TemperatureInduced Magnetization of Planar Co/Si Nanostructures,” Low Temp. Phys 33, 324–328 (2007).

    Article  CAS  Google Scholar 

  92. V. O. Vas’kovskii, G. S. Patrin, D. A. Velikanov, P. A. Savin, A. V. Svalov, A. A. Yuvchenko, and N. N. Shchegoleva, Magnetic hysteresis of Co/Si multilayers with variable thickness parameters. Phys. Met. Metallogr 103, 278–283 (2007).

    Article  Google Scholar 

  93. W. Felsch, “Ferroagnetische Eigenschaften amorpher Kobaltdchichten,” Z. Angew. Phys 30, 275–278 (1970).

    CAS  Google Scholar 

  94. R. Malmhäll and T. Chen, “Thickness Dependence of Magnetic Hysteretic Properties of Rf-Sputtered Amorphous Tb–Fe Alloy Thin Films,” J. Appl. Phys. 53, 7843–7845 (1982).

    Article  Google Scholar 

  95. P. Perera, M. J. O’Shea, and H. H. Hamdeh, “Magnetic State of Thin DyFe Amorphous Layers,” J. Magn. Magn. Mater. 162, 183–188 (1996).

    Article  CAS  Google Scholar 

  96. A. V. Svalov, V. O. Vas’kovskiy, E. A. Kataeva, and G. V. Kurlyandskaya. Kurlyandskaya, “Magnetic Compensation State Peculiarities in [Gd–Co/X] n Layered Films,” Phys. Met. Metallogr. 101 (Suppl.1), S81–S83 (2006).

    Article  Google Scholar 

  97. B. Hebler, A. Hassdenteufel, P. Reinhardt, H. Karl, and M. Albrecht, “Ferrimagnetic Tb–Fe Alloy Thin Films: Composition and Thickness Dependence of Magnetic Properties and All-Optical Switching,” Front. Mater 3, 1–8 (2016).

    Article  Google Scholar 

  98. R. Hasegawa, “Temperature and Compositional Dependence of Magnetic Bubble Properties of Amorphous Gd–Co–Mo Films,” J. Appl. Phys. 46, 5263–5267 (1975).

    Article  CAS  Google Scholar 

  99. C. Kaiser, A. F. Panchula, and S. S. P. Parkin, “Finite Tunneling Spin Polarization at the Compensation Point of Rare-Earth-Metal-Transition-Metal Alloys,” Phys. Rev. Lett. 95, 047202 (2005).

    Article  CAS  Google Scholar 

  100. A. V. Svalov, G. V. Kurlyandskaya, V. O. Vas’kovskiy, A. Larranaga, R. Domingues Della Pace, and C. C. Plá Cid, “Thickness-Dependent Curie Temperature in Ferrimagnetic Gd–Co/Ti Multilayers,” Superlattices Microstruct 90, 242–246 (2016).

    Article  CAS  Google Scholar 

  101. P. Hansen, C. Clausen, G. Much, M. Rosenkranz, K. Witter. Witter, “Magnetic and Magneto-Optlcal Properties of Rare-Earth Transition-Metal Alloys Containing Gd, Tb, Fe, Co,” J. Appl. Phys. 66, 756–768 (1989).

    Article  CAS  Google Scholar 

  102. I. Ennen, D. Kappe, T. Rempel, C. Glenske, and A. Hütten, “Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications,” Sensors 16, 904–928 (2016).

    Article  CAS  Google Scholar 

  103. L. Jogschies, D. Klaas, R. Kruppe, J. Rittinger, P. Taptimthong, A. Wienecke, L. Rissing, and M. C. Wurz, “Developments of Magnetoresistive Sensors for Industrial Applications,” Sensors 15, 28665– 28689 (2015).

    Article  Google Scholar 

  104. R. Coehoorn, “Giant Magnetoresistance and Magnetic Interactions in Exchange-Biased Spin-Valves,” in Handbook of Magnetic Materials, Vol. 15, ed. by K. H. J. Buschow (North-Holland, Amsterdam, 2003), pp. 1–198.

  105. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J. S. Munoz, and M. D. Baro. Baro, “Exchange Bias in Nanostructures,” Phys. Rep. 422, 65–117 (2005).

    Article  Google Scholar 

  106. V. O. Vas’kovskiy, V. N. Lepalovskij, A. N. Gor’kovenko, N. A. Kulesh, P. A. Savin, A. V. Svalov, E. A. Stepanova, N. N. Shchegoleva, and A. A. Yuvchenko, “Fe 20 Ni 80 /Fe 50 Mn 50 Film Magnetoresistive Medium,” Tech. Phys 60, 116–122 (2015).

    Article  CAS  Google Scholar 

  107. K.-C. Chen, Y. H. Wu, K -M. Wu, J. C. Wu, and L. Horng, “Effect of Annealing Temperature on Exchange Coupling in NiFe/FeMn and FeMn/NiFe Systems,” J. Appl. Phys. 101, 09E516 (2007).

    Article  CAS  Google Scholar 

  108. K.-Y. Kim, H.-C. Choi, C.-Y. You, and J.-S. Lee, “Exchange Bias and Compositional Depth Profiles of Annealed NiFe/FeMn/CoFe Trilayers,” J. Appl. Phys. 105, 07D715 (2009).

    Article  CAS  Google Scholar 

  109. V. N. Lepalovskij and V. O. Vas’kovskij, “Magnetoresistive 3d-Metal Alloy Films with Low Coercive Force,” J. Magn. Magn. Mater. 160, 343–344 (1996).

    Article  CAS  Google Scholar 

  110. A. V. Svalov, P. A. Savin, V. N. Lepalovskij, A. Larrañaga, V. O. Vas’kovskiy, Arribas A. Garcia, and G. V. Kurlyandskaya, “Exchange Biased FeNi/FeMn Bilayers with Coercivity and Switching Field Enhanced,” AIP Advances 3, 092104 (2013).

    Article  CAS  Google Scholar 

  111. V. O. Vas’kovskiy, V. G. Mukhametov, and P. A. Savin, “Investigation and Optimization of Parameters of Thin-Film Magnetoresistive Transducers,” Mikroelektronika 23, 66–73 (1994).

    Google Scholar 

  112. T. Lin, D. Mauri, N. Staud, C. Hwang, and J. K. Howard. Howard, “Improved Exchange Coupling Between Ferromagnetic N–Fe and Antiferromagnetic Ni–Mn–Based Films,” Appl. Phys. Lett. 65, 1183–1185 (1994).

    Article  CAS  Google Scholar 

  113. E. Krén, E. Nagy, I. Nagy, L. Pál, P. Szabó, “Structures and Phase Transformations in the Mn-Ni System Near Equiatomic Concentration,” J. Phys. Chem. Solids 29, 101–108 (1968).

    Article  Google Scholar 

  114. T. Yang and W. Y. Lai, “Exchange Coupling and Thermostability in NiFe/NiMn Bilayers,” J. Phys. D: Appl. Phys 32, 2856–2860 (1999).

    Article  CAS  Google Scholar 

  115. B. Y. Wong, C. Mitsumata, S. Prakash, D. E. Laughlin, and T. Kobayashi, “Structural Origin of Magnetic Biased Field in NiMn/NiFe Exchange Coupled Films,” J. Appl. Phys. 79, 7896–7904 (1996).

    Article  CAS  Google Scholar 

  116. Z. Qian, J. M. Sivertsen, J. H. Judy, EverittA. Brenda, S. Mao, and E. S. Murdock, “Exchange Coupling of Radio Frequency Sputtered NiMn/NiFe and NiFe/NiMn Bilayers,” J. Appl. Phys. 85, 6106–6108 (1999).

    Article  CAS  Google Scholar 

  117. B. Dai, J. W. Cai, and W. Y. Lai, “Structural and Magnetic Properties of NiFe/NiMn Bilayers with Different Seed and Cap Layers,” J. Magn. Magn. Matter 257, 190–194 (2003).

    Article  CAS  Google Scholar 

  118. S. Groudeva-Zotova, D. Elefant, R. Kaltofen, J. Thomas, and C. M. Schneider. Schneider, “NiMn/FeNi Exchange Biasing Systems-Magnetic and Structural Characteristics after Short Annealing Close to the Phase Transition Point of the AFM Layer,” J. Magn. Magn. Mater. 278, 379–391 (2004).

    Article  CAS  Google Scholar 

  119. S. Mao, S. Gangopadhyay, N. Amin, and E. Murdock, “NiMn-Pinned Spin Valves with High Pinning Field Made by Ion Beam Sputtering,” Appl. Phys. Lett. 69, 3593–3595 (1996).

    Article  CAS  Google Scholar 

  120. D. Spenato, J. B. Youssef, and H. L. Gall, “From Ferromagnetic-Ferromagnetic to Ferromagnetic–Antiferromagnetic Exchange Coupling in NiFe/MnNi Bilayers,” J. Appl. Phys. 89, 6898–6890 (2001).

    Article  CAS  Google Scholar 

  121. M. Tsunoda, Y. Tsuchiya, M. Konoto, and M. Takahashi, “Microstructure of Antiferromagnetic Layer Affecting on Magnetic Exchange Coupling in Trilayered Ni–Fe/25 at% Ni–Mn/Ni–Fe Films,” J. Magn. Magn. Mater. 171, 29–44 (1997).

    Article  CAS  Google Scholar 

  122. A. Oles, F. Kajzar, M. Kucab, and W. Sikora, Magnetic Structures Determined by Neutron Diffraction (Panstwowe Wydawnictwo Naukowe, Krakow, 1976).

    Google Scholar 

  123. N. Smith and W. C. Cain, “Micromagnetic Model of An Exchange Coupled NiFe–TbCo Bilayers,” J. Appl. Phys. 69, 2471–2479 (1991).

    Article  CAS  Google Scholar 

  124. W. C. Cain and M. H. Kryder, “Investigation of the Exchange Mechanism in NiTb–TbCo Bilayers,” J. Appl. Phys. 67, 5722–5724 (1993).

    Article  Google Scholar 

  125. Z. Shichang, C. Lei, Z. Xiucheng, and L. Daiheng, “Investigation of FMR Characterization of the Exchange Coupling NiFe/TbCo Bilayer Films,” Mater. Sci. Prog 7, 339–343 (1993).

    Google Scholar 

  126. G. I. Frolov and V. S. Zhigalov, Physical Properties and Application of Magneto-Film Nanocomposites (Nauka, Novosibirsk, 2006) [in Russian].

    Google Scholar 

  127. V. O. Vaskovskiy, K. G. Balymov, A. V. Svalov, N. A. Kulesh, E. A. Stepanova, and A. N. Sorokin, “Magnetic Anisotropy of Tb–Co Amorphous Films,” Phys. Solid State 53, 2275–2283 (2011).

    Article  CAS  Google Scholar 

  128. V. O. Vaskovskiy, K. G. Balymov, A. A. Yuvchenko, A. V. Svalov, A. N. Sorokin, and N. A. Kulesh. Kulesh, “Magnetoresistive Fe19Ni81/Tb–Co Medium with an Internal Magnetic Bias,” Tech. Phys 56, 981–985 (2011).

    Article  CAS  Google Scholar 

  129. N. A. Kulesh, K. G. Balymov, O. A. Adanakova, and V. O. Vas’kovskiy Vas’kovskiy, “Temperature Stability of Exchange Bias Field and Magnetoresistance of Permalloy Layer in Fe 20 Ni 80 /Tb–Co Films,” IEEE Trans. Magn. 51, 1–4 (2015).

    Article  CAS  Google Scholar 

  130. E. E. Fullerton, J. S. Jiang, and S. D. Bader, “Hard/Soft Magnetic Heterostructures: Model Exchange-Spring Magnets,” J. Magn. Magn. Mater. 200, 392–404 (1999).

    Article  CAS  Google Scholar 

  131. V. O. Vas’kovskiy, A. V. Svalov, K. G. Balymov, and N. A. Kulesh. Kulesh, “Effect of Annealing on the Magnetic Anisotropy and Hysteretic Properties of Film Structures Containing Tb–Co Amorphous Layers,” Phys. Met. Metallog 113, 862–866 (2012).

    Article  Google Scholar 

  132. N. A. Kulesh, K. G. Balymov, A. N. Sorokin, and V. O. Vas’kovskiy, “Influence of Permalloy Layer and Ti Spacer Thicknesses on Magnetic and Magnetoresistive Properties of Fe 19 Ni 81 /Ti/Tb–Co Films,” Solid State Phenom. 190, 451–454 (2012).

    Article  CAS  Google Scholar 

  133. N. A. Kulesh, K. G. Balymov, V. O. Vas’kovskiy, A. V. Svalov, and A. N. Sorokin, “Anomalies in Hysteresis Properties of Fe 20 Ni 80 /Tb–Co Films with Unidirectional Anisotropy,” Thin Solid Films 577, 1–5 (2015).

    Article  CAS  Google Scholar 

  134. N. A. Kulesh, K. G. Balymov, and V. O. Vas’kovskiy, “Influence of the Interface Quality on Magnetic Properties of Fe 20 Ni 80 //Tb–Co Films with Unidirectional Anisotropy,” Acta Polon. 127, 525–527 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Svalov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svalov, A.V., Vas’kovskiy, V.O. & Kurlyandskaya, G.V. Influence of the Size and Structural Factors on the Magnetism of Multilayer Films Based on 3d and 4f Metals. Phys. Metals Metallogr. 118, 1263–1299 (2017). https://doi.org/10.1134/S0031918X17130026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17130026

Keywords

Navigation