Skip to main content
Log in

On the measurement of gold nanoparticle sizes by the dynamic light scattering method

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The application of the dynamic light scattering (DLS) method for determining the size distribution of colloidal gold nanoparticles in a range of 1–100 nm is discussed. It is shown that rotational diffusion of nonspherical strongly scattering particles with sizes of larger than 30–40 nm results in the appearance of a false peak in a size range of about 5–10 nm. In this case, the uncritical application of the DLS method may yield particle volume or number size distributions different from those obtained by transmission electron microscopy. For weakly scattering particles with diameters of smaller that 20 nm, the DLS method demonstrates an additional peak of intensity distribution in the region of large sizes that is related to particle aggregates or byproduct particles rather than individual nanoparticles. Practical methods for solving the problem of false peaks are discussed. It is established that the width of the DLS distribution does not correspond to transmission electron microscopy data and is overestimated. The advantages and drawbacks of the methods are compared and it is noted that, at present, the DLS method is the only instrument suitable for nonperturbative and sensitive diagnostics of relatively slow aggregation processes with characteristic times on the order of 1 min. In particular, this method can be used to diagnose gold nanoparticle conjugate aggregation initiated by biospecific interactions on their surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dynamic Light Scattering. Applications of Photon Correlation Spectroscopy, Pecora, R., Ed., New York-London: Plenum, 1985.

    Google Scholar 

  2. Meyer, W.V., Smart, A.E., Wegdam, G.H., and Brown, R.G.W., Appl. Opt., 2006, vol. 45, p. 2149.

    Article  Google Scholar 

  3. Noskin, V.A., Doctoral (Phys.-Math.) Dissertation, Gatchina: Leningrad Inst. of Nuclear Physics, 1983.

    Google Scholar 

  4. Berne, B.J. and Pecora, R., Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics, New York: Dover, 2000.

    Google Scholar 

  5. Dykman, L.A., Bogatyrev, V.A., Shchegolev, S.Yu., and Khlebtsov, N.G., Zolotye nanochastitsy: Sintez, svoistva, biomeditsinskoe primenenie (Gold Nanoparticles: Synthesis, Properties, Biomedical Applications), Moscow: Nauka, 2008.

    Google Scholar 

  6. Khlebtsov, N.G. and Dykman, L.A., J. Quant. Spectrosc. Radiat. Transfer, 2010, vol. 11, p. 1.

    Article  Google Scholar 

  7. Khlebtsov, N.G., Bogatyrev, V.A., Khlebtsov, B.N., et al., Kolloidn. Zh., 2003, vol. 65, no. 5, p. 679.

    Google Scholar 

  8. Jans, H., Liu, X., Austin, L., et al., Anal. Chem., 2009, vol. 81, p. 9425.

    Article  CAS  Google Scholar 

  9. Kalluri, J.R., Arbneshi, T., Khan, S.A., et al., Angew. Chem., 2009, vol. 48, p. 9668.

    CAS  Google Scholar 

  10. Liu, X., Dai, Q., Austin, L., et al., J. Am. Chem. Soc., 2008, vol. 130, p. 2780.

    Article  CAS  Google Scholar 

  11. Witten, K.G., Bretschneider, J.C., Eckert, T., Richtering, W., and Simon, U., Phys. Chem. Chem. Phys., 2008, vol. 10, p. 1870.

    Article  CAS  Google Scholar 

  12. URL: http://www.malvern.com/LabEng/products/zetasizer/zetasizer.htm

  13. Jack, R.O., McNeil-Watson, F., Kelly, J.M., et al., Abstracts of Papers, ECIS 2008 Conf., Cracow: Cracow Univ., 2008, p. 201.

    Google Scholar 

  14. Khlebtsov, N.G., Kvant. Elektron., 2008, vol. 38, p. 504.

    Article  CAS  Google Scholar 

  15. Khlebtsov, N.G., Bogatyrev, V.A., Dykman, L.A., and Melnikov, A.G., J. Colloid Interface Sci., 1996, vol. 180, p. 436.

    Article  CAS  Google Scholar 

  16. Brown, K.R., Walter, D.G., and Natan, M., J. Chem. Mater., 2000, vol. 12, p. 306.

    Article  CAS  Google Scholar 

  17. Van der Zande, B.M.I., Dhont Jan, K.G., Bohmer, M.R., and Philipse, A.P., Langmuir, 2000, vol. 16, p. 459.

    Article  Google Scholar 

  18. Rodriguez-Fernandez, J., Perez-Juste, J., Liz-Marzan, L.M., and Lang, P.R., J. Phys. Chem. C, 2007, vol. 111, p. 5020.

    Article  CAS  Google Scholar 

  19. Maltsev, V.P., Rev. Sci. Instrum., 2000, vol. 71, p. 243.

    Article  CAS  Google Scholar 

  20. Maltsev, V.P., Chernyshev, A.V., Semyanov, K.A., and Soini, E., Appl. Opt., 1996, vol. 35, p. 3275.

    Article  CAS  Google Scholar 

  21. Shifrin, K.S. and Tonna, G., Adv. Geophys., 1993, vol. 34, p. 175.

    Article  Google Scholar 

  22. Khlebtsov, B.N., Khanadeev, V.A., and Khlebtsov, N.G., Langmuir, 2008, vol. 24, p. 8964.

    Article  CAS  Google Scholar 

  23. Khlebtsov, B.N., Bogatyrev, V.A., Dykman, L.A., and Khlebtsov, N.G., Opt. Spektrosk., 2007, vol. 102, p. 273.

    Article  Google Scholar 

  24. Khlebtsov, N.G., Kolloidn. Zh., 2003, vol. 65, p. 710.

    Google Scholar 

  25. Klyubin, V.V., Kruglova, L.A., Sakharova, H.A., and Tallier, Yu.A., Kolloidn. Zh., 1990, vol. 52, p. 470.

    CAS  Google Scholar 

  26. Klyubin, V.V. and Bungov, V.N., Kolloidn. Zh., 1998, vol. 60, p. 344.

    Google Scholar 

  27. Njoki, P.N., Lim, I.-I.S., Mott, D., et al., J. Phys. Chem. B, 2007, vol. 111, p. 14664.

    CAS  Google Scholar 

  28. Haiss, W., Thanh, N.T.K., Aveard, J., and Fernig, D.G., Anal. Chem., 2007, vol. 79, p. 4215.

    Article  CAS  Google Scholar 

  29. Khlebtsov, N.G., Anal. Chem., 2008, vol. 8, p. 6620.

    Article  Google Scholar 

  30. Bogatyrev, V.A., Dykman, L.A., Krasnov, Ya.M., et al., Kolloidn. Zh., 2002, vol. 64, p. 745.

    Google Scholar 

  31. Bogatyrev, V.A., Dykman, L.A., Khlebtsov, B.N., and Khlebtsov, N.G., Opt. Spektrosk., 2004, vol. 96, p. 139.

    Article  Google Scholar 

  32. Khlebtsov, N.G., Bogatyrev, V.A., Dykman, L.A., et al., J. Quant. Spectrosc. Radiat. Transfer, 2004, vol. 89, p. 133.

    Article  CAS  Google Scholar 

  33. Khlebtsov, B.N., Zharov, V.P., Melnikov, A.G., et al., Nanotechnology, 2006, vol. 17, p. 5167.

    Article  CAS  Google Scholar 

  34. Pylaev, T.E., Khanadeev, V.A., Khlebtsov, et al., Abstracts of Papers, The 2nd Int. Competition of Scientific Papers in Nanotechnology for Young Scientists Rusnanotech 09, Moscow: Rosnanotekh, 2009, p. 501.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Khlebtsov.

Additional information

Original Russian Text © B.N. Khlebtsov, N.G. Khlebtsov, 2011, published in Kolloidnyi Zhurnal, 2011, Vol. 73, No. 1, pp. 105–114.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khlebtsov, B.N., Khlebtsov, N.G. On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J 73, 118–127 (2011). https://doi.org/10.1134/S1061933X11010078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X11010078

Keywords

Navigation