Skip to main content
Log in

Thermodynamic Characteristics of the Interface between Condensed Phases in Binary Metal Alloys

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A size dependence of the interfacial tension of nanoparticles, which are in a solid medium under the thermodynamic equilibrium conditions of the system, has been obtained using the thermodynamic method of Gibbs dividing surfaces (tensile surfaces in this case). The consideration is carried out within the ideality approximation and taking into account particle–particle interactions. The compositions of the contacting phases in binary metal alloys with allowance for their sizes have been found. The calculations are performed for binary metal alloys, such as Zr–Nb, Cr–Ti, and Fe–Cr. The results obtained are in good qualitative agreement with the known data in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. V. K. Grigorovich, Heat Resistance and State Diagram (Electronic Structure and Thermodynamics of Heat-Resistant Alloys) (Metallurgiya, Moscow, 1969) [in Russian].

    Google Scholar 

  2. P. E. L’vov, V. V. Svetukhin, and A. V. Obukhov, Phys. Solid State 53, 421 (2011).

    Article  ADS  Google Scholar 

  3. P. E. L’vov and V. V. Svetukhin, Phys. Solid State 56, 1889 (2014).

    Article  ADS  Google Scholar 

  4. S. A. Kukushkin and A. V. Osipov, Tech. Phys. 42, 1212 (1997).

    Article  Google Scholar 

  5. S. A. Kukushkin and A. V. Osipov, Phys. Usp. 41, 983 (1998).

    Article  ADS  Google Scholar 

  6. V. M. Koshkin and V. V. Slezov, Tech. Phys. Lett. 30, 367 (2004).

    Article  ADS  Google Scholar 

  7. P. E. L’vov and V. V. Svetukhin, Tech. Phys. Lett. 26, 986 (2000).

    Article  ADS  Google Scholar 

  8. P. E. L’vov and V. V. Svetukhin, Tech. Phys. Lett. 35, 1040 (2009).

    Article  ADS  Google Scholar 

  9. A. I. Rusanov, Thermodynamic Foundations of Mechanochemistry (Nauka, St. Petersburg, 2006) [in Russian].

    Google Scholar 

  10. R. Becker, Ann. Phys. 32, 128 (1938).

    Article  Google Scholar 

  11. J. W. P. Schmelzer, J. Schmelzer, Jr., and L. S. Gutzow, J. Chem. Phys. 112, 3820 (2000).

    Article  ADS  Google Scholar 

  12. J. W. P. Schmelzer, A. S. Abyzov, and J. Möller, J. Chem. Phys. 121, 6900 (2004).

    Article  ADS  Google Scholar 

  13. J. Schmelzer, G. Boltachev, and V. G. Baidakov, J. Chem. Phys. 124, 194503 (2006).

    Article  ADS  Google Scholar 

  14. A. S. Abyzov and J. W. P. Schmelzer, J. Chem. Phys. 127, 114504 (2007).

    Article  ADS  Google Scholar 

  15. V. V. Slezov, Kinetics of First-Order Phase Transitions (Wiley-VCH, Weinheim, 2009).

    Book  Google Scholar 

  16. B. Sonderegger, I. Holzer, and E. Kozeschnik, Mater. Sci. Forum 638–642, 2730 (2010)

    Article  Google Scholar 

  17. V. Svetukhin, P. L’vov, E. Gaganidze, M. Tikhonchev, and C. Dethloff, J. Nucl. Mater. 415, 205 (2011).

    Article  ADS  Google Scholar 

  18. A. S. Shirinyan and M. Wautelet, Mater. Sci. Eng. 26, 735 (2006).

    Article  Google Scholar 

  19. T. Tanaka, Mater. Sci. Forum 653, 55 (2010).

    Article  Google Scholar 

  20. S. Novy, P. Parcige, and C. Parcige, J. Nucl. Mater. 384, 96 (2009).

    Article  ADS  Google Scholar 

  21. A. I. Rusanov, Phase Equilibria and Surface Phenomena (Khimiya, Leningrad, 1967) [in Russian].

    Google Scholar 

  22. P. E. L’vov and V. V. Svetukhin, Phys. Solid State 55, 2374 (2013).

    Article  ADS  Google Scholar 

  23. P. E. L’vov and V. V. Svetukhin, Phys. Solid State 56, 1889 (2014).

    Article  ADS  Google Scholar 

  24. P. E. L’vov and V. V. Svetukhin, Phys. Solid State 54, 2285 (2012).

    Article  ADS  Google Scholar 

  25. P. E. L’vov and V. V. Svetukhin, Phys. Solid State 58, 1432 (2016).

    Article  ADS  Google Scholar 

  26. P. E. L’vov and V. V. Svetukhin, Phys. Solid State 59, 355 (2017).

    Article  ADS  Google Scholar 

  27. J. W. Cahn and J. E. Hillard, J. Chem. Phys. 28, 258 (1958).

    Article  ADS  Google Scholar 

  28. A. S. Shirinyan and M. Wautelet, Mater. Sci. Eng. 26, 735 (2006).

    Article  Google Scholar 

  29. A. S. Shirinyan, G. Wilde, and Y. Bilogorodskyy, J. Mater. Sci. 53, 2859 (2018).

    Article  ADS  Google Scholar 

  30. M. Wautelet and A. S. Shirinyan, Pure Appl. Chem. 81, 1921 (2009).

    Article  Google Scholar 

  31. A. S. Shirinyan, A. M. Gusak, and M. Wautelet, Acta Mater. 53, 5025 (2005).

    Article  ADS  Google Scholar 

  32. A. S. Shirinyan and A. M. Gusak, Philos. Mag. 84, 579 (2004).

    Article  ADS  Google Scholar 

  33. A. S. Shirinyan and M. Wantelet, Nanotechnology 15, 1720 (2004).

    Article  ADS  Google Scholar 

  34. A. I. Rusanov, Kolloid. Zh. 49, 932 (1987).

    Google Scholar 

  35. A. A. Smirnov, Molecular Kinetic Theory of Metals (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  36. M. A. Shebzukhova and A. A. Shebzukhov, Bull. Russ. Acad. Sci.: Phys. 81, 612 (2017).

    Article  Google Scholar 

  37. Zhu Ru-Zeng and Wang Xiao-Song, Chin. Phys. B 19, 076801 (2010).

    Article  ADS  Google Scholar 

  38. Z. A. Shebzukhov, M. A. Shebzukhova, and A. A. Shebzukhov, Poverkhnost’, No. 11, 102 (2009)

  39. S. I. Popel’, Surface Phenomena in Melts (Metallurgiya, Moscow, 1994) [in Russian].

    Google Scholar 

  40. A. A. Shebzukhov and Kh. B. Khokonov, Fiz. Mezhfaz. Yavlen., No. 4, 3 (1979).

  41. A. I. Frenkel, Ch. Cooper, and R. Vasic, Ann. Rev. Anal. Chem., No. 4, 23 (2011).

  42. M. A. Shebzukhova and A. A. Shebzukhov, Phys. Solid State 59, 1395 (2017).

    Article  ADS  Google Scholar 

  43. M. A. Shebzukhova and A. A. Shebzukhov, Phys. Solid State 60, 397 (2018).

    Article  ADS  Google Scholar 

  44. M. A. Shebzukhova and A. A. Shebzukhov, Phys. Solid State 60, 183 (2018).

    Article  ADS  Google Scholar 

  45. M. A. Shebzukhova and A. A. Shebzukhov, Bull. Russ. Acad. Sci.: Phys. 72, 1347 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shebzukhova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afashagov, A.A., Shebzukhova, M.A. & Shebzukhov, A.A. Thermodynamic Characteristics of the Interface between Condensed Phases in Binary Metal Alloys. Phys. Solid State 64, 293–299 (2022). https://doi.org/10.1134/S1063783422070010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422070010

Keywords:

Navigation