Skip to main content
Log in

Diagnostics of a Linear Homogeneous Distorting Operator on the Observed Image Spectrum

  • THEORY AND METHODS OF INFORMATION PROCESSING
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract—In the study, we examine the problem of diagnosing distortions in the resulting image, the so-called “blind estimation” task. The questions of identification of the type and parameters of linear smoothing homogeneous distorting operators of three types are investigated: circular form with a rectangular profile, circular form with a Gaussian profile, and linear form with a rectangular profile. The identification of distortions is carried out by means of the image spectrum density analysis using the average radial profile and average directional profile. The diagnostic algorithms for each of the considered distortion types are proposed and studied. The influence of noise and data accuracy on the result reliability and the capabilities of diagnostic algorithms in the case of simultaneous superposition of several distortions are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H. C. Andrews and B. R. Hunt, Digital Image Restoration (Prentice-Hall, New Jersey, 1977).

    Google Scholar 

  2. G. I. Vasilenko and A. M. Taratorin, Image Reconstruction (Radio i Svyaz’, Moscow, 1986) [in Russian].

    Google Scholar 

  3. S. Tiwari, V. P. Shukla, and A. K. Singh, “Review of motion blur estimation techniques,” J. Image Graph. 1 (4), 176−184 (2013).

    Google Scholar 

  4. R. M. Bora, S. N. Chaudhari, and P. S. Vispute, “A comparative analysis of motion-blur magnitude parameter estimation techniques,” Int. J. Eng. Res. & Tech. (IJERT) 3, 587−589 (2014).

    Google Scholar 

  5. R. Dash and B. Majhi, “Motion blur parameters estimation for image restoration,” Optik 125, 1634 ̶ 1640 (2014).

  6. Y. X. Song and Y. M. Zhang, “Parameter estimation and restoration of motion blurred image,” Appl. Mech. Mater. 608609, 855−859 (2014).

  7. J. P. A. Oliveira, M. A. T. Figueiredo, and J. M. Bioucas-Dias, “Blind estimation of motion blur parameters for image deconvolution,” in Proc. 3rd Iberian Conf. on Pattern Recognition and Image Analysis (IbPRIA 2007), Girona, Spain, June 6–8,2007 (IEEE, New York, 2007), Vol. 4478, pp. 604611.

  8. J. P. Oliveira, M. A. Figueiredo, and J. M. Bioucas-Dias, “Parametric blur estimation for blind restoration of natural images: Linear motion and out-of-focus,” IEEE Trans. Image Process 23 (1), 466477 (2014).

    Article  MathSciNet  Google Scholar 

  9. S. Tiwari, V. P. Shukla, S. R. Biradar, and A. K. Singh, “Blur parameters identification for simultaneous defocus and motion blur,” CSI Trans. on ICT 2 (1), 1122 (2014).

    Article  Google Scholar 

  10. M. Liang, “Parameter estimation for defocus blurred image based on polar transformation,” Rev. Tec. Ing. Univ. Zulia 39 (1), 333−338 (2016).

    Google Scholar 

  11. X. Zhu, S. Cohen, S. Schiller, and P. Milanfar, “Estimating spatially varying defocus blur from a single image,” IEEE Trans. Image Process. 22, 4879−4891 (2013).

    Article  MathSciNet  Google Scholar 

  12. R. Gajjar, A. Pathak, and T. Zaveri, “Defocus blur parameter estimation technique,” Int. J. Electron. Commun. Eng. Technol. (IJECET) 7 (4), 85−90 (2016).

    Google Scholar 

  13. J. Radon, “Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten,” Berichte Sachsische Akad. Wissenschaften, Math.-Phys. Klasse 1, (Leipzig) 69, 262–277 (1917).

  14. S. R. Deans, The Radon Transform and Some of Its Applications (Wiley, New York, 1983).

    MATH  Google Scholar 

  15. A. V. Oppenheim and J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).

    Article  Google Scholar 

  16. W. K. Pratt, Digital Image Processing (Wiley, New York, 1979; Mir, Moscow, 1982).

  17. R. C. Gonzalez, and R. E. Woods, Digital Image Processing (Prentice Hall, Upper Saddle River, New Jersey, 2008; Tekhnosfera, Moscow, 2012).

  18. O. P. Milyukova, “Prior information in problems of restoration,” Komp. Opt., Nos. 1415, 148155 (1995).

  19. O. P. Milukova and P. A. Chochia, “Application of metrical and topological image characteristics for distortion diagnostics in the signal restoration problem,” J. Commun. Technol. Electron. 63, 637642 (2018).

    Article  Google Scholar 

  20. P. A. Chochia, Methods for Processing of Video Information on the Basis of Two-Scale Image Model (LAP: Lambert Academic Publ., Saarbrucken, 2017) [in Russian].

  21. M. A. Noll, “Cepstrum Pitch Determination,” J. Acoust. Soc. Am. 41, 293−309 (1967).

    Article  Google Scholar 

  22. I. S. Gonorovskii, Radio Circuits and Signals (Radio i Svyaz’, Moscow, 1986) [in Russian].

    Google Scholar 

  23. B. P. Bogert, M. J. R. Healy, and J. W. Tukey, “The quefrency alanysis of time series for echoes: cepstrum, pseudo autocovariance, cross-cepstrum and saphe cracking,” in Proc. Symp. on Time Series Analysis, Ed. M. Rosenblatt, (Wiley, New York, 1963), Chapt 15, pp. 209243.

  24. M. P. Norton and D. Karczub, Fundamentals of Noise and Vibration Analysis for Engineers (Cambridge Univ. Press, Cambridge, 2003).

    Book  Google Scholar 

  25. S. Wu, Z. Lu, E. P. Ong, and W. Lin, “Blind image blur identification in cepstrum domain,” in Computer Communications and Networks (Proc. of 16th Int. Conf. on Computer Communications and Networks (ICCCN), Honolulu, HI, Aug. 13–16 2007), (IEEE, New York, 2007), pp. 11661171.

  26. R. B. Randall, “A history of cepstrum analysis and its application to mechanical problems,” Mech. Syst. Signal Processing 97 (12), 319 (2017).

    Article  Google Scholar 

  27. R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” Commun. ACM 15, 1115 (1972).

    Article  Google Scholar 

  28. D. H. Ballard, “Generalizing the Hough transform to detect arbitrary shapes,” Pattern Recogn. 13 (2), 111122 (1981).

    Article  Google Scholar 

  29. V. N. Karnaukhov, V. I. Kober, M. G. Mozerov, and P. A. Chochia, “Design of a block-programming system for a posteriori analysis and restoration of multispectral images,” J. Commun. Technol. Electron. 64, 827833 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Chochia.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chochia, P.A. Diagnostics of a Linear Homogeneous Distorting Operator on the Observed Image Spectrum. J. Commun. Technol. Electron. 65, 725–734 (2020). https://doi.org/10.1134/S106422692006008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422692006008X

Navigation