Skip to main content
Log in

A system of algorithms for stable human recognition

  • Pattern Analysis and Image Processing
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

The principles for designing multimodal biometric systems for improving the reliability of human recognition systems are discussed. The problem is solved by the example of a combination of two biometric human features that can be obtained without any contact with the registering sensor, namely, face images and records of the human voice. The identification technique developed involves face, speech, and voice recognition. Note that the data is processed in real time. The following identification scheme is employed: detection of human presence-face detection-enquiry of speech data-joint recognition of the facial and vocal features. The methods and algorithms employed for solving all posed problems are described, and the rules for making joint decisions are addressed. The results of testing the described algorithms are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Murynin, “Automatic Person Identification System Based on Stereo Images,” Izv. Ross. Akad. Nauk, Teor. Sist. Upr., No. 1, (1999) [Comp. Syst. Sci. 38 (1), 100–108 (1999)].

  2. R. Snelick, U. Uludag, A. Mink, et al., “Large Scale Evaluation of Multimodal Biometric Authentication Using State-Of-The-Art Systems,” IEEE Trans. Patt. Anal. Mach. Intell. 27, 450–455 (2005).

    Article  Google Scholar 

  3. J. Bigun and G. Borgerforce, Sarmiti Di Baja G. Audio-and Video-Based Biometric Person Authentication (Springer, Berlin, 1997).

    Google Scholar 

  4. N. Sedgwick, The Need for Standardization of Multi-Modal Biometric Combination (Algorithmica Limited, Cambridge, Cambridge, 2003).

    Google Scholar 

  5. L. Hong, A. Jain, and S. Pankanti, Can Multibiometrics Improve Performance? in Proceedings of IEEE Workshop on Automatic Identification Advanced Technologies, New Jersey, USA, 1999, pp. 59–64.

  6. A. Jain and A. Ross, “Multibiometric Systems,” Commun. ACM 47(1), 34–40 (2004).

    Article  Google Scholar 

  7. S. Ben-Yacoub, Y. Abdeljaoued, and E. Mayoraz, “Fusion of Face and Speech Data for Personal Identity Verification,” IEEE Trans. Neural Networks 10(5), 1065–1074 (1999).

    Article  Google Scholar 

  8. J. Kittler, M. Hatef, and R. Duin, et al., “On Combining Classifiers,” IEEE Trans. Patt. Anal. Mach. Intell. 20(3), 226–239 (1998).

    Article  Google Scholar 

  9. A. Jain and A. Ross, “Learning User-Specific Parameters in a Multibiometric System,” in Proceedings of IEEE International Conference on Image Processing, Rochester, USA, 2002, pp. 57–60.

  10. J. Daugman, Biometric Decision Landscapes. Technical Report TR482 (University of Cambridge Computer Laboratory, Cambridge, 2000).

    Google Scholar 

  11. M. Husken, M. Brauckmann, S. Gehlen, et al., “Strategies and Benefits of Fusion of 2D and 3D Face Recognition,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2005 (IEEE Computer Society, Washington, DC, 2005).

    Google Scholar 

  12. L. Rabiner and B-H. Juang, Fundaments of Speech Recognition (Prentice Hall Signal Processing Series, Englewood Cliffs, NJ, 1993).

    Google Scholar 

  13. D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker Verification Using Adapted Gaussian Mixture Models,” Digital Signal Processing, No. 10, 19–41 (2000).

  14. European Telecommunication Standard Institute. ETSI Standard ES 202 050. Sophia-Antipolis, France: Sophia-Antipolis, 2004, www.etsi.org.

    Google Scholar 

  15. KohonenT. Self-Organizing Maps (Springer, Berlin, 1995).

  16. V. Chuchupal, K. Makovkin, K. Gorokhovsky, et al., “A Study of the Acoustic Model Choice for Russian Speech Recognition,” in Proceedings of International Workshop on Speech and Computer, St. Petersburg, Russia, 2002, pp. 53–56.

  17. O. Faugeras, B. Hotz, and H. Mathieu, “Real-Time Correlation Based Stereo: Algorithm, Implementations and Applications,” Int. J. Computer Vision, No. 1 (1996).

  18. V. Kuznetsov, I. Matveev, A. Murynin, et al., “Development of the Robust Human Feature Detection Algorithm for Surveillance System,” in Proceedings of Samsung Technical Conference, Seul, South Korea, 2004, pp. 53–57.

  19. I. A. Matveev and A. B. Murynin, “Identification of Objects Based on Stereo Images. Optimization of Algorithms of Reconstruction of Surfaces,” Izv. Ross. Akad. Nauk, Teor. Sist. Upr., No. 3, (1998) [Comp. Syst. Sci. 37 (3), 487–493 (1998)].

  20. P. Bazanov, D. Buryak, W. Mun, et al., “Comparison of Gabor Wavelet and Neural Network-based Face Detection Algorithms,” in Proceedings of IASTED Conference on Signal and Image Processing, Honolulu, USA, 2006, pp. 178–184.

  21. V. D. Kuznetsov, I. A. Matveev, and A. B. Murynin, “Identification of Objects Based on Stereo Images. Optimization of Information Space,” Izv. Ross. Akad. Nauk, Teor. Sist. Upr., No. 4, (1998) [Comp. Syst. Sci. 37 (4), 557–560 (1998)].

  22. L. Sirovich and M. Kirby, “Low-Dimensional Procedure for the Characterization of Human Faces,” J. Optical Society Amer. 4(3), 519–24 (1987).

    Article  Google Scholar 

  23. M. Turk and A. Pentland, “Eigenfaces for Recognition,” J. Cognitive Neuroscience 3(1), 71–86 (1991).

    Article  Google Scholar 

  24. B. Moghaddam, A. Pentland, “Face Recognition Using View-Based and Modular Eigenspaces” in Automatic Systems for the Identification and Inspection of Humans (SPIE, 1994) vol. 2277.

  25. I. P. Gaidyshev, Data Analysis and Processing, Special Handbook (Piter, St. Petersburg, 2001) [in Russian].

    Google Scholar 

  26. N. Belhumeur, J. Hespanha, and D. Kriegman, “Eigenfaces Vs. Fisherfaces: Recognition Using Class Specific Linear Projection,” IEEE Trans. Patt. Anal. Mach. Intell. 19(7), 711–720 (1997).

    Article  Google Scholar 

  27. J. Daugman, “High Confidence Visual Recognition of Persons by a Test of Statistical Independence,” IEEE Trans. Patt. Anal. Mach. Intell. 15(11), 1148–1161 (1993).

    Article  Google Scholar 

  28. P. Griffin, Optimal Fusion for Identity Verification (Identix, New Jersey, 2003).

    Google Scholar 

  29. R. Duda, P. Hart, and D. Stork, Pattern Classification (Wiley, New York, 2001).

    MATH  Google Scholar 

  30. J. Mansfield, G. Kelly, D. Chandler, et al., Biometric Product Testing, Final Report, CESG Biometrics Working Group (2001).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Desyatchikov, D.V. Kovkov, V.V. Lobantsov, K.A. Makovkin, I.A. Matveev, A.B. Murynin, V.Ya. Chuchupal, 2006, published in Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 2006, No. 6, pp. 119–130.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desyatchikov, A.A., Kovkov, D.V., Lobantsov, V.V. et al. A system of algorithms for stable human recognition. J. Comput. Syst. Sci. Int. 45, 958–969 (2006). https://doi.org/10.1134/S1064230706060116

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230706060116

Keywords

Navigation