Skip to main content
Log in

Dynamics of transition processes and structure formation in critical heat-mass transfer regimes during liquid boiling and cavitation

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The results of experimental studies concerning the development of critical phenomena and structure formation in the process of boiling in falling films and during liquid cavitation are given. In conditions of stepwise and periodic pulsed surges of a thermal load, the parameters of formed metastable regular structures and critical parameters of heat-releasing surface drying are shown to be determined by the dynamics of moving wetting boundaries in the process of system self-organization. In the case of high-intensity heat fluxes, decomposition of a falling film is determined by propagation regimes of self-maintaining boiling fronts with a complex shape of intermediate structures. The study of ultrasonic cavitation of water, glycerin, and vacuum oil shows that structures of interacting gas-vapor bubbles (having the form of fractal clusters) are formed near the emitter surface. Spatial structures are characterized by a low-frequency divergence of the power spectra and a scale-invariant function of the fluctuation distributions. The experimental results are in good qualitative agreement with the numerical simulations performed within the theory of 1/f fluctuations in the case of nonequilibrium phase transitions in a spatially distributed system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohdal, T. and Kuczynski, W., Boiling of Refrigerant Under Periodic Disturbance Conditions, Proc. Of the 5th Intern. Conf. on Transport Phenomena in Multiphase Systems, HEAT 2008, Bialystok, Poland, 2008, vol. 2, pp. 1–8.

    Google Scholar 

  2. Okuyama, K., Takehara, R. and Iida, Y., Pumping Action by Boiling Propagation in a Microchannel, Microscale Thermophysical Engineering, 2005, vol. 9, pp. 119–135.

    Article  Google Scholar 

  3. Zhukov, S.A. and Barelko, V.V., Dynamic and Structural Aspects of the Processes of Single-Phase Convective Heat Transfer Metastable Regime Decay and Bubble Boiling Formation, Int. J. Heat Mass Transfer, 1992, vol. 35, no. 4, pp. 759–775.

    Article  Google Scholar 

  4. Avksentyuk, B.P., Nonequilibrium Model of an Evaporation Front, Russian Journ. of Eng. Thermophys., 1995, vol. 5, pp. 1–8.

    Google Scholar 

  5. Syromyatnikov, S.N. and Pavlov, P.A., Instability of evaporation surface, High Temperature, 1998, vol. 36, no. 2, pp. 298–303.

    Google Scholar 

  6. Pavlenko, A.N. and Lel, V.V., Approximate Simulation Model of a self-maintaining Evaporation Front, Thermophysics and Aeromechanics, 1999, vol. 6, no. l, pp. 105–117.

    Google Scholar 

  7. Mitrovic, J. and Fauser, J., Propagation of boiling Fronts Along Horizontally Arranged Heated Tubes, Trans IChemE, 2001, vol. 79(Part A), pp. 363–370.

    Article  Google Scholar 

  8. Okuyma, K., Kim, J., Mori, S. and Iida, Y., Boiling Propagation of Water on a Smooth Film Heater Surfase, Int. J. Heat Mass Transfer, 2006, vol. 49, pp. 2207–2214.

    Article  Google Scholar 

  9. Zhukov, S.A. and Barelko, V.V., Nonuniform Steady States of the Boiling Process in the Transition Region Between the Nucleate and Film Regimes, Int. J. Heat Mass Transfer, 1983, vol. 26, no. 8, pp. 1121–1130.

    Article  Google Scholar 

  10. Pavlenko, A.N., Transitional Processes at Boiling and Evaporation, Dr. Sci. (Phys.-Math.) Dissertation, Novosibirsk: 2001, 449 P.

  11. Pavlenko, A. N., Starodubtseva, I. P. and Matsekh, A.M., The Effect of Boundary Conditions on Dynamics of Film Boiling Site Development, Thermophysics and Aeromechanics, 2003, vol. 10, no. 4, pp. 591–606.

    Google Scholar 

  12. Gabaraev, B.A., Kovalev, S.A., Molochnikov, Yu.S., Solov’ev, S.L. and Usatikov, S.V., Secondary wetting and autowave change of boiling regimes, High Temperature, 2001, vol. 39, no. 2, pp. 322–334.

    Article  Google Scholar 

  13. Matsekh, A. M. and Pavlenko, A. N., New Type of Dry out Crisis in Free Falling Boiling Liquid Films, Intern. Journal “Microgravity Science and Technology”, 2007, vol. XIX, nos. 3–4, pp. 69–70.

    Article  Google Scholar 

  14. Pavlenko, A.N., Lel, V.V., Serov, A.F., Nazarov, A.D. and Matsekh, A.M., Wave Amplitude Growth and Heat Transfer in Falling Intensively Evaporating Liquid Film, J. of Eng. Thermophysics, 2002, vol. 11, no. 1, pp. 7–43.

    Google Scholar 

  15. Lauterborn, W., Schmitz, E. and Judt, A., Experimental approach to a complex acoustic system, Int. J. Bifurcation Chaos, 1993, vol. 3, no. 3, 635–642.

    Article  MATH  Google Scholar 

  16. Akhatov, I., Parlitz, U. and Lauterborn, W., Towards a theory of self-organization phenomena in bubble-liquid mixtures, Phys. Rev. E, 1996, vol. 54, pp. 4990–5003.

    Article  ADS  Google Scholar 

  17. Parlitz, U., Mettin, R., Luther, S., Akhatov, I., Voss, M. and Lauterborn, W., Spatiotemporal dynamics of acoustic cavitation bubble clouds, Phil. Trans. R. Soc. Lond. A, 1999, vol. 357, pp. 313–334.

    Article  ADS  Google Scholar 

  18. Luther, S., Mettin, R., Koch, P. and Lauterborn, W., Observation of acoustic cavitation bubbles at 2250 frames per second, Ultrasonics Sonochemistry, 2001, vol. 8, vyp. 3, pp. 159–162.

    Article  Google Scholar 

  19. Appel, J., Koch, P., Mettin, R., Krefting, D. and Lauterborn, W., Stereoscopic high-speed recording of bubble filaments, Ultrasonics Sonochemistry, 2004, vol. 11, vyp. 1, pp. 39–42.

    Article  Google Scholar 

  20. Akulichev, V.A., Kavitatsiya v kriogennykh i kipyashchikh zhidkostyakh (Cavitation in cryogenic and boiling liquids), Moscow: Nauka, 1978, 279 p.

    Google Scholar 

  21. Pernik, A.D., Problemy kavitatsii (Problems of cavitation), Leningrad: Sudpromgiz, 1963, 335 p.

    Google Scholar 

  22. Knepp, R., Deill, Dzh. and Khemmit, F., Kavitatsiya (Cavitation), Moscow: Mir, 1974, 688 p.

    Google Scholar 

  23. Akulichev, V.A., Alekseev, V.N. and Bulanov, V.A., Periodicheskie fazovye prevrashcheniya v zhidkostyakh (Periodical phase transformations in liquids), Moscow: Nauka, 1986, 280 p.

    Google Scholar 

  24. Akulichev, V.A., Acoustic cavitation in low-temperature liquids, Ultrasonics, 1986. pp. 8–18.

  25. Besov, A.S., Kedrinskii, V.K. and Pal’chikov, E.I., On threshold cavitational effects in pulsed rarefaction waves, Pis’ma v Zhurnal tekhnicheskoi fiziki, 1989, vol. 15, vyp. 16, pp. 23–27.

    Google Scholar 

  26. Besov, A.S., Kedrinskii, V.K., Morozov, N.F., Petrov, Yu.V. and Utkin, A.A., On the analogy of the initial stage of destruction of solids and liquids at pulsed loading, Doklady AN, 2001, vol. 378, no. 3, pp. 333–335.

    Google Scholar 

  27. Kedrinskii, V.K., Gidrodinamika vzryva: eksperiment i modeli (Hydrodynamics of explosion: experiment and models), Novosibirsk: Izd. SO RAN, 2000, 435 p.

    Google Scholar 

  28. Pettersen, M.S., Balibar, S. and Maris, H.J., Experimental Investigation of Cavitation in Superfluid Helium-4, Phys. Rev., 1994, vyp. 49, p. 12062.

  29. Balibar, S., Guthmann, C., Lambare, H., Roche, P., Rolley, E. and Maris, H J., Quantum Cavitation in Superfluid Helium 4, J. Low Temp. Phys., 1995, vol. 101, p. 271.

    Article  ADS  Google Scholar 

  30. Maksimov, A.O. and Sosedko, E.V., Peculiarities of nonlinear gas bubble dynamics under the action of resonance and noise acoustic fields, Pis’ma v Zhurnal eksperimental’noi i teoreticheskoi fiziki, 2003, vol. 29, vyp. 3, p. 40.

    Google Scholar 

  31. Sankin, G.N. and Teslenko, V.S., Two-threshold regime of cavitation, Doklady AN, 2003, vol. 393, vyp. 6, pp. 362–365.

    Google Scholar 

  32. Voronin, D.V., Sankin, G.N., Teslenko, V.S., Mettin, R., and Lauterborn, V., Secondary acoustic waves in polydisperse bubble medium, Prikladnaya mekhanika i tekhnicheskaya fizika, 2003, vol. 44, no. 1, pp. 22–32.

    Google Scholar 

  33. Koverda, V.P., Reshetnikov, A.V., Skokov, V.N. and Vinogradov, A.V., 1/f spectrum during acoustic cavitation, Pis’ma v Zhurnal tekhnicheskoi fiziki, 2004, vol. 30, no. 22, pp. 31–36.

    Google Scholar 

  34. Jensen, H.J., Self-organized criticality, Cambridge UP, NY, 1998.

  35. Koverda, V.P., Skokov, V.N. and Skripov, V.P., 1/f- noise during a non-equilibrium phase transition. Experiment and mathematical model, Zhurnal eksperimental’noi i teoreticheskoi fiziki, 1998, vol. 113, no. 5, pp. 1748–1757.

    Google Scholar 

  36. Koverda, V.P., Skokov, V.N., An origin of 1/f fluctuations at a nonequilibrium phase transition, Physics A, 1999, vol. 262, pp. 376–386.

    Article  Google Scholar 

  37. Skokov, V.N. and Koverda, V.P., Flicker-noise during transition to crisis mode of boiling in a nonlinear heater, Teplofizika vysokikh temperatur, 2000, vol. 38, no. 2, pp. 268–273.

    Google Scholar 

  38. Skokov, V.N., Koverda, V.P. and Reshetnikov, A.V., Self-maintaining criticality and 1/f fluctuation at a non-equilibrium phase transitions, Zhurnal eksperimental’noi i teoreticheskoi fiziki, 2001, vol. 119, no. 3, pp. 613–620.

    Google Scholar 

  39. Pavlenko, A.N., Surtaev, A.S. and Matsekh, A.M., Transient Processes in Falling Films of Liquid Under Conditions of Unsteady-State Heat Release, High Temperature, 2007, vol. 45, no. 6, pp. 826–836.

    Article  Google Scholar 

  40. Pavlenko, A.N., Lel, V.V., Heat transfer and crisis phenomena in falling films of cryogenic liquid, Russ. J. of Eng. Thermophysics, 1997, vol. 7, nos. 3–4, p. 177.

    Google Scholar 

  41. Prisnyakov, V.F., Kipenie (Boiling), Kiev: Nauk. Dumka, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Pavlenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlenko, A.N., Koverda, V.P., Skokov, V.N. et al. Dynamics of transition processes and structure formation in critical heat-mass transfer regimes during liquid boiling and cavitation. J. Engin. Thermophys. 18, 20–38 (2009). https://doi.org/10.1134/S1810232809010044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232809010044

Keywords

Navigation