Skip to main content
Log in

Heat Transfer Enhancement during Pool Water Boiling Using 3D Printed Capillary-Porous Coatings

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The paper presents the results of an experimental study of the effect of 3D capillary-porous copper coatings with various geometries on the heat transfer rate and bubble dynamics during water pool boiling. The surfaces were modified via additive manufacturing (3D printing). It is shown that for the fabricated surfaces, the heat transfer enhancement is up to 2 times as compared with the reference bare surface. The highest degrees of the heat transfer enhancement are achieved for the coatings with the smallest wavelength of the structure modulation and channel width. High-speed video recording of boiling was also carried out, based on which the bubble departure diameters were analyzed for surfaces of various types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Mudawar, I., Recent Advances in High-Flux, Two-Phase Thermal Management, J. Thermal Sci. Eng. Appl., 2013, vol. 5, no. 2, p. 021012.

    Article  Google Scholar 

  2. Liang, G. and Mudawar, I., Review of Nanoscale Boiling Enhancement Techniques and Proposed Systematic Testing Strategy to Ensure Cooling Reliability and Repeatability, Appl. Thermal Eng., 2021, vol. 184, p. 115982.

    Article  Google Scholar 

  3. Dedov, A.V., A Review of Modern Methods for Enhancing Nucleate Boiling Heat Transfer, Thermal Eng., 2019, vol. 66, no. 12, pp. 881–915.

    Article  ADS  Google Scholar 

  4. Surtaev, A.S., Serdyukov, V.S., and Pavlenko, A.N., Nanotechnologies for Thermophysics: Heat Transfer and Crisis Phenomena at Boiling, Nanotech. Russia, 2016, vol. 11, pp. 696–715.

    Article  Google Scholar 

  5. Shojaeian, M. and Koşar, A., Pool Boiling and Flow Boiling on Micro- and Nanostructured Surfaces, Exp. Thermal Fluid Sci., 2015, vol. 63, pp. 45–73.

    Article  Google Scholar 

  6. Beaman, J.J., Bourell, D.L., Seepersad, C.C., and Kovar, D., Additive Manufacturing Review: Early Past to Current Practice, J. Manuf. Sci. Eng., 2020, vol. 142, no. 11, p. 110812.

    Article  Google Scholar 

  7. Wong, K.K. and Leong, K.C., Saturated Pool Boiling Enhancement Using Porous Lattice Structures Produced by Selective Laser Melting, Int. J. Heat Mass Transfer, 2018, vol. 121, pp. 46–63.

    Article  Google Scholar 

  8. Kang, Z. and Wang, L., Boiling Heat Transfer on Surfaces with 3D-Printing Microstructures, Exp. Thermal Fluid Sci., 2018, vol. 93, pp. 165–170.

    Article  Google Scholar 

  9. Zhang, C., Zhang, L., Xu, H., Li, P., and Qian, B., Performance of Pool Boiling with 3D Grid Structure Manufactured by Selective Laser Melting Technique, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 570–580.

    Article  Google Scholar 

  10. Liu, H., Wang, J., Gu, Z., Fei, X., and Zhang, L., Enhancement of Pool Boiling Heat Transfer Using 3D-Printed Groove Structure, Int. J. Heat Mass Transfer, 2021, p. 122155.

    Article  Google Scholar 

  11. Liu, H., Zhang, C., Wang, J., and Zhang, L., Critical Heat Flux Enhancement Using Composite Porous Structure Produced by Selective Laser Melting, Appl. Thermal Eng., 2021, vol. 197, p. 117396.

    Article  Google Scholar 

  12. Zhukov, V.I., Pavlenko, A.N., and Shvetsov, D.A., The Effect of Pressure on Heat Transfer at Evaporation/Boiling in Horizontal Liquid Layers of Various Heights on a Microstructured Surface Produced by 3D Laser Printing, Int. J. Heat Mass Transfer, 2020, vol. 163, p. 120488.

    Article  Google Scholar 

  13. Pavlenko, A.N., Kuznetsov, D.V., and Bessmeltsev, V.P., Experimental Study on Heat Transfer and Critical Heat Flux During Pool Boiling of Nitrogen on 3D Printed Structured Copper Capillary-Porous Coatings, J. Eng. Therm., 2021, vol. 30, no. 3, pp. 341–349.

    Article  Google Scholar 

  14. Bergles, A.E. and Chyu, M.C., Characteristics of Nucleate Pool Boiling from Porous Metallic Coatings, J. Heat Transfer, 1982, vol. 104, pp. 279–285.

    Article  Google Scholar 

  15. Bessmeltsev, V.P., Pavlenko, A.N., and Zhukov, V.I., Development of a Technology for Creating Structured Capillary-Porous Coatings by Means of 3D Printing for Intensification of Heat Transfer During Boiling, Optoel. Instrum. Data Process., 2019, vol. 55, no. 6, pp. 554–563.

    Article  ADS  Google Scholar 

  16. Kwark, S.M., Moreno, G., Kumar, R., Moon, H., and You, S.M., Nanocoating Characterization in Pool Boiling Heat Transfer of Pure Water, Int. J. Heat Mass Transfer, 2010, vol. 53, nos. 21/22, pp. 4579–4587.

    Article  Google Scholar 

  17. Rohsenow, W.M., A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids, Cambridge: MIT Division of Industrial Cooperation, 1951.

  18. Surtaev, A.S., Pavlenko, A.N., Kuznetsov, D.V., Kalita, V.I., Komlev, D.I., Ivannikov, A.Y., and Radyuk, A.A., Heat Transfer and Crisis Phenomena at Pool Boiling of Liquid Nitrogen on the Surfaces with Capillary-Porous Coatings, Int. J. Heat Mass Transfer, 2017, vol. 108, pp. 146–155.

    Article  Google Scholar 

  19. Surtaev, A., Kuznetsov, D., Serdyukov, V., Pavlenko, A., Kalita, V., Komlev, D., Radyuk, A., and Ivannikov, A., Structured Capillary-Porous Coatings for Enhancement of Heat Transfer at Pool Boiling, Appl. Thermal Eng., 2018, vol. 133, pp. 532–542.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Serdyukov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serdyukov, V.S., Volodin, O.A., Bessmeltsev, V.P. et al. Heat Transfer Enhancement during Pool Water Boiling Using 3D Printed Capillary-Porous Coatings. J. Engin. Thermophys. 31, 201–209 (2022). https://doi.org/10.1134/S1810232822020011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822020011

Navigation