Skip to main content
Log in

Nanotechnologies for thermophysics: Heat transfer and crisis phenomena at boiling

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

This article reviews the recent research on the effect of micro- and nanomodified surfaces and coatings on heat-transfer enhancement and critical heat fluxes (CHFs) at boiling. The first part contains a detailed review of papers devoted to investigation of boiling heat transfer and crisis phenomena in nanofluids. The interest in this field is caused by a significant increase in the CHF value at boiling of nanofluid due to the sedimentation of nanoparticles and altered wettability and porosity of heat-releasing surfaces. Possible mechanisms of the increase in CHF and the main disadvantages of using nanofluids in practical applications are discussed. The second part is devoted to various techniques that are used to create micro- and nanostructured heat-exchange surfaces and to research the effect of modified heaters on boiling performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Poniewski and J. R. Thome, “Nucleate boiling on micro-structured surfaces,” LTCM-BOOK-2008-001 (Heat Transfer Res. Inc., USA, 2008).

    Google Scholar 

  2. I. A. Popov, Kh. M. Makhyanov, and V. M. Gureev, Physical Principles and Industrial Application of Heat Exchange Intensification (Tsentr Innovats. Tekhnol., Kazan, 2009) [in Russian].

    Google Scholar 

  3. D. Attinger et al., “Surface engineering for phase change heat transfer: a review,” MRS Energy Sustainability 1, E4 (2014).

    Article  Google Scholar 

  4. M. Shojaeian and A. Kosar, “Pool boiling and flow boiling on micro-and nanostructured surfaces,” Exp. Therm. Fluid Sci. 63, 45 (2015).

    Article  Google Scholar 

  5. C. M. Patil and S. G. Kandlikar, “Review of the manufacturing techniques for porous surfaces used in enhanced pool boiling,” Heat Transfer Eng. 35, 887 (2014).

    Article  Google Scholar 

  6. M. McCarthy, “Recent advances in micro-nano-scale surface modifications and their effects on pool boiling critical heat flux and heat transfer coefficient,” in The Encyclopedia of Two-Phase Heat Transfer and Flow II (World Scientific, Singapore, 2015).

    Google Scholar 

  7. S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in Developments and Applications of Non-Newtonian Flows, Ed. by D. A. Siginer and H. P. Wang, Fluids Engineering Division FED, Vol. 231, Materials Division MD, Vol. 66 (ASME, New York, 1995), p. 99.

    Google Scholar 

  8. J. A. Eastman et al., “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett. 78, 718 (2001).

    Article  Google Scholar 

  9. M. S. Liu et al., “Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method,” Int. J. Heat Mass Transfer 49, 3028 (2006).

    Article  Google Scholar 

  10. S. Jana, A. Salehi-Khojin, and W. H. Zhong, “Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives,” Thermochimica 462, 45 (2007).

    Article  Google Scholar 

  11. X. Q. Wang and A. S. Mujumdar, “Heat transfer characteristics of nanofluids: a review,” Int. J. Therm. Sci. 46, 1 (2007).

    Article  Google Scholar 

  12. Q. Li et al., “Experimental investigation on flow and convective heat transfer feature of a nanofluid for aerospace thermal management,” Yuhang Xuebao (J. Astronaut. (China)) 26, 391 (2005).

    Google Scholar 

  13. Y. Yang et al., “Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow,” Int. J. Heat Mass Transfer 48, 1107 (2005).

    Article  Google Scholar 

  14. Y. L. Ding, H. Alias, D. S. Wen, et al., “Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids),” Int. J. Heat Mass Transfer 49, 240 (2006).

    Article  Google Scholar 

  15. Y. Ding, H. Chen, L. Wang, et al., “Heat transfer intensification using nanofluids,” KONA Powder Part. J., No. 25, 23 (2007).

    Article  Google Scholar 

  16. W. Yu et al., “Review and comparison of nanofluid thermal conductivity and heat transfer enhancements,” Heat Transfer Eng. 29, 432 (2008).

    Article  Google Scholar 

  17. V. I. Terekhov, S. V. Kalinina, and V. V. Lemanov, “Mechanism of heat transfer in nanofluids: state of the art (review). Part 1. Synthesis and properties of nanofluids,” Thermophys. Aeromech. 17, 1 (2010).

    Article  Google Scholar 

  18. V. I. Terekhov, S. V. Kalinina, and V. V. Lemanov, “The mechanism of heat transfer in nanofluids: state of the art (review). Part 2. Convective heat transfer,” Thermophys. Aeromech. 17, 157 (2010).

    Article  Google Scholar 

  19. D. Wen and Y. Ding, “Experimental investigation into the pool boiling heat transfer of aqueous based ?-alumina nanofluids,” J. Nanopart. Res. 7, 265 (2005).

    Article  Google Scholar 

  20. K. J. Park and D. Jung, “Enhancement of nucleate boiling heat transfer using carbon nanotubes,” Int. J. Heat Mass Transfer 50, 4499 (2007).

    Article  Google Scholar 

  21. S. M. You, J. H. Kim, and K. H. Kim, “Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer,” Appl. Phys. Lett. 83, 3374 (2003).

    Article  Google Scholar 

  22. P. Vassallo, R. Kumar, and S. D’Amico, “Pool boiling heat transfer experiments in silica water nano-fluids,” Int. J. Heat Mass Transfer 47, 407 (2004).

    Article  Google Scholar 

  23. A. Minakov, M. Pryazhnikov, and V. Rudyak, “The investigation of boiling crisis of nanofluids,” in Proceedings of the International Symposium on Interfacial Phenomena and Heat Transfer, Novosibirsk, Russia, March 2–4, 2016, p. 22.

    Google Scholar 

  24. S. K. Das, N. Putra, and W. Roetzel, “Pool boiling characteristics of nano-fluids,” Int. J. Heat Mass Transfer 46, 851 (2003).

    Article  Google Scholar 

  25. I. C. Bang and S. H. Chang, “Boiling heat transfer performance and phenomena of Al2O3 water nanofluids from a plain surface in a pool,” Int. J. Heat Mass Transfer 48, 2407 (2005).

    Article  Google Scholar 

  26. C. Gerardi et al., “Infrared thermometry study of nanofluid pool boiling phenomena,” Nanoscale Res. Lett. 6 (1), 1 (2011).

    Article  Google Scholar 

  27. S. J. Kim et al., “Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids,” Appl. Phys. Lett. 89 (15), 153107 (2006).

    Article  Google Scholar 

  28. S. J. Kim et al., “Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux,” Int. J. Heat Mass Transfer 50 (19), 4105 (2007).

    Article  Google Scholar 

  29. H. D. Kim, J. Kim, and M. H. Kim, “Experimental studies on CHF characteristics of nano-fluids at pool boiling,” Int. J. Multiphase Flow 33 (7), 691 (2007).

    Article  Google Scholar 

  30. Z. Liu and L. Liao, “Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling,” Int. J. Heat Mass Transfer 51 (9), 2593 (2008).

    Article  Google Scholar 

  31. J. S. Coursey and J. Kim, “Nanofluid boiling: the effect of surface wettability,” Int. J. Heat Fluid Flow 29 (6), 1577 (2008).

    Article  Google Scholar 

  32. Y. H. Jeong, W. J. Chang, and S. H. Chang, “Wettability of heated surfaces under pool boiling using surfactant solutions and nano-fluids,” Int. J. Heat Mass Transfer 51 (11), 3025 (2008).

    Article  Google Scholar 

  33. B. P. Fokin, M. Ya. Belen’kii, V. I. Almjashev, V. B. Khabensky, O. V. Almjasheva, and V. V. Gusarov, “Critical heat flux in a boiling aqueous dispersion of nanoparticles,” Tech. Phys. Lett. 35, 440 (2009).

    Article  Google Scholar 

  34. T. I. Kim, Y. H. Jeong, and S. H. Chang, “An experimental study on CHF enhancement in flow boiling using Al2O3 nano-fluid,” Int. J. Heat Mass Transfer 53, 1015 (2010).

    Article  Google Scholar 

  35. Yu. A. Kuzma-Kichta, A. V. Lavrikov, M. V. Shustov, et al., “Studying heat transfer enhancement for water boiling on a surface with micro-and nanorelief,” Therm. Eng. 61, 210 (2014).

    Article  Google Scholar 

  36. M. M. Sarafraz, T. Kiani, and F. Hormozi, “Critical heat flux and pool boiling heat transfer analysis of synthesized zirconia aqueous nano-fluids,” Int. Commun. Heat Mass Transfer 70, 75 (2016).

    Article  Google Scholar 

  37. M. M. Sarafraz and F. Hormozi, “Experimental investigation on the pool boiling heat transfer to aqueous multi-walled carbon nanotube nanofluids on the micro-finned surfaces,” Int. J. Therm. Sci. 100, 255 (2016).

    Article  Google Scholar 

  38. B. I. Bondarenko, V. N. Moraru, S. V. Sidorenko, D. V. Komysh, and A. I. Khovavko, “Nanofluids for energetics: effect of stabilization on the critical heat flux at boiling,” Tech. Phys. Lett. 38, 856 (2012).

    Article  Google Scholar 

  39. H. D. Kim and M. H. Kim, “CHF enhancement in pool boiling of nanofluid: effect of nanoparticle-coating on heating surface,” in Proceedings of 2005 Spring Meeting of the Korean Nuclear Society, Korea, 2005.

    Google Scholar 

  40. S. J. Kim et al., “Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux,” Int. J. Heat Mass Transfer 50 (19), 4105 (2007).

    Article  Google Scholar 

  41. T. G. Theofanous et al., “The boiling crisis phenomenon. Part I: Nucleation and nucleate boiling heat transfer,” Exp. Therm. Fluid Sci. 26 (6), 775 (2002).

    Article  Google Scholar 

  42. T. G. Theofanous et al., “The boiling crisis phenomenon. Part II: Dryout dynamics and burnout,” Exp. Therm. Fluid Sci. 26 (6), 793 (2002).

    Article  Google Scholar 

  43. T. G. Theofanous and T. N. Dinh, “High heat flux boiling and burnout as microphysical phenomena: mounting evidenceand opportunities,” Multiphase Sci. Technol. 18, 3 (2006).

    Article  Google Scholar 

  44. C. D. Gerardi, “Investigation of the pool boiling heat transfer enhancement of nano-engineered fluids by means of high-speed infrared thermography,” PhD Thesis (Massachusetts Inst. Technology, 2009).

    Google Scholar 

  45. S. S. Kutateladze, “Hydrodynamic model of the crisis of heat transfer in a boiling liquid with free convection,” Zh. Tekh. Fiz. 20 (11), 1389 (1950).

    Google Scholar 

  46. N. Zuber, “Hydrodynamics aspects of boiling heat transfer,” PhD Thesis, No. AECU 4439 (California Univ., Ramo-Wooldridge, Los Angeles, 1959).

    Book  Google Scholar 

  47. I. I. Gogonin and S. S. Kutateladze, “To the dependence of critical heat flux from the heater size for boiling liquid in a large volume,” Inzh.-Fiz. Zh. 33 (5), 802 (1977).

    Google Scholar 

  48. I. I. Gogonin, “The critical heat flux under boiling and its dependence on the characteristics of heat-transfer wall,” High Temp. 48, 77 (2010).

    Article  Google Scholar 

  49. S. G. Kandlikar, “A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation,” J. Heat Transfer 123 (6), 1071 (2001).

    Article  Google Scholar 

  50. M. N. Golubovic et al., “Nanofluids and critical heat flux, experimental and analytical study,” Appl. Therm. Eng. 29 (7), 1281 (2009).

    Article  Google Scholar 

  51. H. Kim and M. Kim, “Experimental study of the characteristics and mechanism of pool boiling CHF enhancement using nanofluids,” Heat Mass Transfer 45 (7), 991 (2009).

    Article  Google Scholar 

  52. H. Kim, “Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review,” Nanoscale Res. Lett. 6, 1 (2011).

    Google Scholar 

  53. H. D. Kim and M. H. Kim, “Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids,” Appl. Phys. Lett. 91, 014104 (2007).

    Article  Google Scholar 

  54. H. Kim, E. Kim, and M. H. Kim, “Effect of nanoparticle deposit layer properties on pool boiling critical heat flux of water from a thin wire,” Int. J. Heat Mass Transfer 69, 164 (2014).

    Article  Google Scholar 

  55. J. Buongiorno et al., “A feasibility assessment of the use of nanofluids to enhance the in-vessel retention capability in light-water reactors,” Nucl. Eng. Des. 239, 941 (2009).

    Article  Google Scholar 

  56. K. Hadad et al., “Neutronic study of nanofluids application to VVER-1000,” Ann. Nucl. Energy 37 (11), 1447 (2010).

    Article  Google Scholar 

  57. I. C. Bang and G. Heo, “An axiomatic design approach in development of nanofluid coolants,” Appl. Therm. Eng. 29, 75 (2009).

    Article  Google Scholar 

  58. J. Lee and I. Mudawar, “Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels,” Int. J. Heat Mass Transfer 50, 452 (2007).

    Article  Google Scholar 

  59. S. M. Kwark et al., “Nanocoating characterization in pool boiling heat transfer of pure water,” Int. J. Heat Mass Transfer 53 (21), 4579 (2010).

    Article  Google Scholar 

  60. D. H. Min et al., “2-d and 3-d modulated porous coatings for enhanced pool boiling,” Int. J. Heat Mass Transfer 52, 2607 (2009).

    Article  Google Scholar 

  61. S. G. Liter and M. Kaviany, “Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment,” Int. J. Heat Mass Transfer 44, 4287 (2001).

    Article  Google Scholar 

  62. C. Li and G. P. Peterson, “Geometric effects on critical heat flux on horizontal microporous coatings,” J. Thermophys. Heat Transfer 24, 449 (2010).

    Article  Google Scholar 

  63. C. Byon, S. Choi, and S. J. Kim, “Critical heat flux of bi-porous sintered copper coatings in FC-72,” Int. J. Heat Mass Transfer 65, 655 (2013).

    Article  Google Scholar 

  64. Z. Zak Fang, Sintering of Advanced Materials: Fundamental and Processes (Woodhead, Cambridge, UK, 2010).

    Book  Google Scholar 

  65. X. S. Wang, Z. B. Wang, and Q. Z. Chen, “Research on manufacturing technology and heat transfer characteristics of sintered porous surface tubes,” Adv. Mater. Res. 97, 1161 (2010).

    Article  Google Scholar 

  66. R. G. Scurlock, “Enhanced boiling heat transfer surfaces,” Cryogenics 35, 233 (1995).

    Article  Google Scholar 

  67. V. I. Kalita and D. I. Komlev, Plasma Coatings with Nanocrystalline and Amorphous Structure (Lider, Moscow, 2008) [in Russian].

    Google Scholar 

  68. A. S. Surtaev, A. N. Pavlenko, V. I. Kalita, D. V. Kuznetsov, D. I. Komlev, A. A. Radyuk and A. Yu. Ivannikov, “The influence of three-dimensional capillary-porous coatings on heat transfer at liquid boiling,” Tech. Phys. Lett. 42, 391 (2016).

    Article  Google Scholar 

  69. L. B. Boinovich and A. M. Emel’yanenko, “Hydrophobic materials and coatings: principles of design, properties and applications,” Russ. Chem. Rev. 77, 583 (2008).

    Article  Google Scholar 

  70. L. Feng, et al., “A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water,” Angew. Chem. Int. Ed. 43 (15), 2012 (2004).

    Article  Google Scholar 

  71. A. M. Muzafarov, “The development of coatings that give superhydrophobic properties to the surface of silicone rubber,” Nanotechnol. Russ. 3, 587–592 (2008).

    Article  Google Scholar 

  72. L. B. Boinovich, A. G. Domantovskii, A. M. Emelyanenko, A. B. Miller, Yu. F. Potapov, A. N. Khodan, “Antiicing performance of superhydrophobic coatings on aluminum and stainless steel,” Russ. Chem. Bull. 62, 380 (2013).

    Article  Google Scholar 

  73. B. Bourdon et al., “Enhancing the onset of pool boiling by wettability modification on nanometrically smooth surfaces,” Int. Commun. Heat Mass Transfer 45, 11 (2013).

    Article  Google Scholar 

  74. I. I. Gogonin, “The effect of wetting angle on heat transfer at boiling,” Thermophys. Aeromech. 17 (2), 243 (2010).

    Article  Google Scholar 

  75. Q. Yang, J. Ding, and Z. Shen, “Investigation on fouling behaviors of low-energy surface and fouling fractal characteristics,” Chem. Eng. Sci. 55 (4), 797 (2000).

    Article  Google Scholar 

  76. Y. Cai, M. Liu, and L. Hui, “CaCO3 fouling on microscale-nanoscale hydrophobic titania-fluoroalkylsilane films in pool boiling,” AIChE J. 59 (7), 2662 (2013).

    Article  Google Scholar 

  77. L. Hui et al., “Fouling resistance on chemically etched hydrophobic surfaces in nucleate pool boiling,” Chem. Eng. Technol. 38 (3), 416 (2015).

    Article  Google Scholar 

  78. L. L. Wang and M. Y. Liu, “Pool boiling fouling and corrosion properties on liquid-phase-deposition TiO2 coatings with copper substrate,” AIChE J. 57, 1710 (2011).

    Article  Google Scholar 

  79. H. O’Hanley, et al., “Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux,” Appl. Phys. Lett. 103, 024102 (2013).

    Article  Google Scholar 

  80. S. Prakash and J. Yeom, Nanofluidics and Microfluidics: Systems and Applications (William Andrew, Norwich, NY, 2014).

    Google Scholar 

  81. R. Kelsall, I. W. Hamley, and M. Geoghegan, Nanoscale Science and Technology (Wiley, UK, 2005).

    Book  Google Scholar 

  82. S. Li et al., “Nature-inspired boiling enhancement by novel nanostructured macroporous surfaces,” Adv. Function. Mater. 18, 2215 (2008).

    Article  Google Scholar 

  83. M. S. El-Genk and A. F. Ali, “Enhanced nucleate boiling on copper micro-porous surfaces,” Int. J. Multiphase Flow 36, 780 (2010).

    Article  Google Scholar 

  84. P. Xu, Q. Li, and Y. Xuan, “Enhanced boiling heat transfer on composite porous surface,” Int. J. Heat Mass Transfer 80, 107 (2015).

    Article  Google Scholar 

  85. Y. Y. Li, Z. H. Liu, and B. C. Zheng, “Experimental study on the saturated pool boiling heat transfer on nano-scale modification surface,” Int. J. Heat Mass Transfer 84, 550 (2015).

    Article  Google Scholar 

  86. B. J. Zhang, K. J. Kim, and H. Yoon, “Enhanced heat transfer performance of alumina sponge-like nanoporous structures through surface wettability control in nucleate pool boiling,” Int. J. Heat Mass Transfer 55, 7487 (2012).

    Article  Google Scholar 

  87. H. S. Ahn et al., “Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface,” Nucl. Eng. Des. 240 (10), 3350 (2010).

    Article  Google Scholar 

  88. H. S. Ahn et al., “The effect of capillary wicking action of micro/nano structures on pool boiling critical heat flux,” Int. J. Heat Mass Transfer 55, 89 (2012).

    Article  Google Scholar 

  89. C. Li et al., “Nanostructured copper interfaces for enhanced boiling,” Small 4, 1084 (2008).

    Article  Google Scholar 

  90. J. Y. Ho, K. C. Leong, and C. Yang, “Saturated pool boiling from carbon nanotube coated surfaces at different orientations,” Int. J. Heat Mass Transfer 79, 893–904 (2014).

    Article  Google Scholar 

  91. R. Bertossi et al., “Influence of carbon nanotubes on deionized water pool boiling performances,” Exp. Therm. Fluid Sci. 61, 187 (2015).

    Article  Google Scholar 

  92. M. Dharmendra et al., “Pool boiling heat transfer enhancement using vertically aligned carbon nanotube coatings on a copper substrate,” Appl. Therm. Eng. 99, 61 (2016).

    Article  Google Scholar 

  93. J. A. Weibel et al., “Carbon nanotube coatings for enhanced capillary-fed boiling from porous microstructures,” Nanoscale Microscale Thermophys. Eng. 16 (1), 1 (2012).

    Article  Google Scholar 

  94. H. S. Ahn et al., “Pool boiling experiments on multiwalled carbon nanotube (MWCNT) forests,” J. Heat Transfer 128 (12), 1335 (2006).

    Article  Google Scholar 

  95. H. S. Ahn, V. Sathyamurthi, and D. Banerjee, “Pool boiling experiments on a nano-structured surface,” IEEE Trans. Compon. Packaging Technol. 32 (1), 156 (2009).

    Article  Google Scholar 

  96. S. Ujereh, T. Fisher, and I. Mudawar, “Effects of carbon nanotube arrays on nucleate pool boiling,” Int. J. Heat Mass Transfer 50 (19), 4023 (2007).

    Article  Google Scholar 

  97. J. P. McHale et al., “Pool boiling performance comparison of smooth and sintered copper surfaces with and without carbon nanotubes,” Nanoscale Microscale Thermophys. Eng. 15 (3), 133 (2011).

    Article  Google Scholar 

  98. R. Chen et al., “Nanowires for enhanced boiling heat transfer,” Nano Lett. 9 (2), 548 (2009).

    Article  Google Scholar 

  99. M. C. Lu et al., “Critical heat flux of pool boiling on Si nanowire array-coated surfaces,” Int. J. Heat Mass Transfer 54 (25), 5359 (2011).

    Article  Google Scholar 

  100. Z. Yao, Y. W. Lu, and S. G. Kandlikar, “Effects of nanowire height on pool boiling performance of water on silicon chips,” Int. J. Therm. Sci. 50 (11), 2084 (2011).

    Article  Google Scholar 

  101. H. Honda, H. Takamastu, and J. J. Wei, “Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicron-scale roughness,” J. Heat Transfer 124 (2), 383 (2002).

    Article  Google Scholar 

  102. J. J. Wei and H. Honda, “Effects of fin geometry on boiling heat transfer from silicon chips with micropin-fins immersed in FC-72,” Int. J. Heat Mass Transfer 46 (21), 4059 (2003).

    Article  Google Scholar 

  103. K. H. Chu, R. Enright, and E. N. Wang, “Structured surfaces for enhanced pool boiling heat transfer,” Appl. Phys. Lett. 100 (24), 241603 (2012).

    Article  Google Scholar 

  104. L. Dong, X. Quan, and P. Cheng, “An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures,” Int. J. Heat Mass Transfer 71, 189 (2014).

    Article  Google Scholar 

  105. B. S. Kim et al., “Micro-nano hybrid structures with manipulated wettability using a two-step silicon etching on a large area,” Nanoscale Res. Lett. 6 (1), 1 (2011).

    Google Scholar 

  106. S. Kim et al., “Effects of nano-fluid and surfaces with nano structure on the increase of CHF,” Exp. Therm. Fluid Sci. 34 (4), 487 (2010).

    Article  Google Scholar 

  107. Z. Yao, Y. W. Lu, and S. G. Kandlikar, “Fabrication of nanowires on orthogonal surfaces of microchannels and their effect on pool boiling,” J. Micromech. Microeng. 22 (11), 115005 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Surtaev.

Additional information

Original Russian Text © A.S. Surtaev, V.S. Serdyukov, A.N. Pavlenko, 2016, published in Rossiiskie Nanotekhnologii, 2016, Vol. 11, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surtaev, A.S., Serdyukov, V.S. & Pavlenko, A.N. Nanotechnologies for thermophysics: Heat transfer and crisis phenomena at boiling. Nanotechnol Russia 11, 696–715 (2016). https://doi.org/10.1134/S1995078016060197

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078016060197

Navigation