Skip to main content
Log in

A two-dimensional nonstationary problem of elastic diffusion for an orthotropic one-component layer

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

A 2 D nonstationary problem of an orthotropic one-component elastic layer, accounting for diffusion, is considered. A locally balanced model of elastic diffusion is used, which includes a coupled set of equations of elastic body motion and a mass-transfer equation. On the layer boundaries normal displacement, tangential stress and diffusive flow are assumed. At an initial time, the layer is in an undisturbed state.

The solution is sought in an integral form, as a double convolution in time and along the space coordinate of Green functions and the right-hand sides of the boundary equations. To construct a solution of the initial problem, Laplace time transform, exponential Fourier transform along the space coordinate in the direction of the layer surface, reduction to zero boundary conditions, and expansion into incomplete Fourier series along a coordinate directed through the depth of the layer are successively used. Thus, the initial problem is reduced to a set of linear algebraic equations, from which forms of the sought functions are found. It is shown that the necessary condition of the applicability of the present algorithm is orthotropy of the medium in question. Inversion of Laplace transform of the sought functions is reduced to computing the originals of the rational functions, which is done analytically, using deductions. It is found that all Green functions are even (odd) relative to Fourier transform parameters, which makes it possible, when the right-hand sides of the boundary conditions are even (odd), to reduce the inversion of exponential Fourier transform to the inversion of sinus-, cosine-transform. In that case, quadrature formulas of medium rectangles are used to find the originals of Fourier transformants.

An example is considered, where surface perturbation is modeled with Heaviside time function and a Gaussian along the space coordinate. A homogenized medium of interlaced layers of aluminum and copper is used as a model of an orthotropic medium. The computational results are presented both analytically and in the form of 3D diagrams of the diffusant concentration increment and displacement vector components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Kubaschewski and B. Hopkins, Oxidation of Metals and Alloys (Butterworths, London, 1953).

    Google Scholar 

  2. V. S. Eremeev, Diffusion and Stress (Energoatomizdat, Moscow, 1984) [in Russian].

    Google Scholar 

  3. A. G. Knyazeva, E. S. Il’ina, and V. N. Demidov, “Thermoelastic problem of the theory of diffusion processes in the surface treatment of materials,” in Proceedings of the 11th All-Russia Congress on Basic Problems of Theoretical and Applied Mechanics, 2015, pp. 1818–1820.

    Google Scholar 

  4. Ia. I. Burak and R. M. Kushnir, Modelling and Optimization in Thermomechanics of Electroconductive Heterogeneous Solids, Vol. 1: Thermomechanics of Mulyicomponent Solids of Low Electrical Conductivity (L’viv, SPOLOM, 2006) [in Ukrainian].

    Google Scholar 

  5. Ya. S. Podstrigach and V. S. Pavlina, “Differential equations of thermodynamic processes n-component solid solution,” Fiz.-Khim.Mekh.Mater. 1, 383–389 (1965).

    Google Scholar 

  6. D. V. Tarlakovskii, V. A. Vestyak, and A. V. Zemskov, “Dynamic processes in thermoelectromagnetoelastic and thermoelastodiffusive media,” Encycl. Therm. Stress 2, 1064–1071 (2014).

    Article  Google Scholar 

  7. A. V. Zemskov and D. V. Tarlakovskii, “Approximate solution of three-dimensional problem for elastic diffusion in orthotropic layer,” J. Math. Sci. 203, 221–238 (2014).

    Article  MathSciNet  Google Scholar 

  8. S. A. Davydov, A. V. Zemskov, and D. V. Tarlakovskii, “An elastic half-space under the action of onedimensional time-dependent diffusion perturbations,” Lobachevskii J. Math. 36, 467–473 (2015).

    Article  Google Scholar 

  9. A. V. Zemskov and D. V. Tarlakovskiy “Method of the equivalent boundary conditions in the unsteady problem for elastic diffusion layer,” Mater. Phys.Mech. 23, 36–41 (2015).

    Google Scholar 

  10. I. B. Badriev and B. Y. Fanyuk, “Iterative methods for solving seepage problems in multilayer beds in the presence of a point source,” Lobachevskii J. Math. 33, 386–399 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. G. Gorshkov and D. V. Tarlakovskii, Dynamic Contact Problems with Moving Boundaries (Fizmatlit, Moscow, 1995) [in Russian].

    Google Scholar 

  12. F. R. Gantmakher, Matrix Theory (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  13. A. V. Bitsadze, Fundamentals of the Theory of Analytic Functions of a Complex Variable (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  14. H. Bateman and A. Erdelyi, Tables of Integral Transforms, Vol. 1: Fourier Transform, Laplace, Mellin (McGraw-Hill, New York, Toronto, London, 1954).

    Google Scholar 

  15. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Vol. 55 of Appl.Math. Series (Natl. Bureau Standards, USA, 1964).

    MATH  Google Scholar 

  16. A. P. Prudnikov, Iu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1: Elementary Functions (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Igumnov.

Additional information

Submitted by A. V. Lapin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igumnov, L.A., Tarlakovskii, D.V. & Zemskov, A.V. A two-dimensional nonstationary problem of elastic diffusion for an orthotropic one-component layer. Lobachevskii J Math 38, 808–817 (2017). https://doi.org/10.1134/S1995080217050146

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080217050146

Keywords and phrases

Navigation