Skip to main content
Log in

Self-healing Coatings Loaded by Nano/microcapsules: A Review

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Coatings are applied on metallic surfaces to provide a dense barrier against the corrosive environment. However, coatings in most cases are vulnerable to damage in the form of internal cracks, which are difficult to detect and repair. One of the most promising types of smart multifunctional coatings is a self-healing coating, which has attracted interest in materials research due to its capability to prevent crack propagation by releasing healing agents at the site of cracks. These self-healing coatings demonstrate autonomic repair for internal cracks as they comprise a coating matrix and nano/microcapsules. Incorporating nano/microcapsules into the coating matrix ensures that the healing agent releases in reaction to propagation of cracks in the coating and then releases the self-healing characteristic to them. This paper aims to provide a perspective of this class of self-healing coatings that incorporate micro/nanocapsules and their synthesis methods. The emulsion method for the synthesis of capsules by organic and inorganic shells is covered as well as the most effective parameters which influence the size of nano/microcapsules. Finally, the incorporation of nano/microcapsules in the metallic and polymeric coating and the possible mechanisms of co-deposition have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

Similar content being viewed by others

REFERENCES

  1. Hou, B., Li, X., Ma, X., Du, C., Zhang, D., Zheng, M., et al., npj Mater. Degrad., 2017, vol. 1, article no. 4. https://doi.org/10.1038/s41529-017-0005-2

    Article  Google Scholar 

  2. Zhang, F., Ju, P., Pan, M., Zhang, D., Huang, Y., Li, G., et al., Corros. Sci., 2018, vol. 144, p. 74. https://doi.org/10.1016/j.corsci.2018.08.005

    Article  CAS  Google Scholar 

  3. Aïssa, B., Therriault, D., Haddad, E., and Jamroz, W., Adv. Mater. Sci. Eng., 2012, vol. 2012, p. 854203. https://doi.org/10.1155/2012/854203

    Article  Google Scholar 

  4. Stankiewicz, A., Szczygieł, I., and Szczygieł, B., J. Mater. Sci., 2013, vol. 48, no. 23, p. 8041.

    Article  CAS  Google Scholar 

  5. Stankiewicz, A., in Nanotechnology in Eco-Efficient Construction, Elsevier, 2019, p. 303. https://doi.org/10.1016/B978-0-08-102641-0.00014-1

  6. Zheludkevich, M.L., Shchukin, D.G., Yasakau, K.A., Möhwald, H., and Ferreira, M.G.S., Chem. Mater., 2007, vol.19, no. 3, p. 402.

    Article  CAS  Google Scholar 

  7. Koochaki, M.S., Khorasani, S.N., Neisiany, R.E., Ashrafi, A., Trasatti, S.P., and Magni, M., J. Mater. Sci., 2021, vol. 56, no. 2, p. 1794. https://doi.org/10.1007/s10853-020-05332-9

    Article  CAS  Google Scholar 

  8. Cui, G., Zhang, C., Wang, A., Zhou, X., Xing, X., Liu, J., et al., Prog. Org. Coat., 2021, vol. 155, p. 106231.

    Article  CAS  Google Scholar 

  9. Adibzadeh, E., Mirabedini, S.M., Behzadnasab, M., and Farnood, R.R., Prog. Org. Coat., 2021, vol. 154, p. 106220.

    Article  CAS  Google Scholar 

  10. Yang, C., Xu, W., Meng, X., Shi, X., Shao, L., Zeng, X., et al., Chem. Eng. J., 2021, vol. 415, p. 128985.

    Article  CAS  Google Scholar 

  11. Liu, T., Li, W., Zhang, C., Wang, W., Dou, W., and Chen, S., J. Ind. Eng. Chem., 2021, vol. 97, p. 560.

    Article  CAS  Google Scholar 

  12. Samadzadeh, M., Boura, S.H., Peikari, M., Kasiriha, S.M., and Ashrafi, A., Prog. Org. Coat., 2010, vol. 68, no. 3, p. 159. https://doi.org/10.1016/j.porgcoat.2010.01.006

    Article  CAS  Google Scholar 

  13. Healing@Dictionary.Cambridge.Org. https://dictionary. cambridge.org/dictionary/english/healing.

  14. Cremaldi, J.C. and Bhushan, B., Beilstein J. Nanotechnol., 2018, vol. 9, no. 1, p. 907.

    Article  CAS  Google Scholar 

  15. Zhai, L., Narkar, A., and Ahn, K., Nano Today, 2020, vol. 30, p. 100826. https://doi.org/10.1016/j.nantod.2019.100826

    Article  CAS  Google Scholar 

  16. Srinivas, M., Yelamasetti, B., Vishnu Vardhan, T., and Mohammed, R., Mater. Today: Proc., 2021, vol. 46, part 1, p. 890. https://linkinghub.elsevier.com/retrieve/ pii/S2214785320408478.

  17. Yang, Y., Ding, X., and Urban, M.W., Prog. Polym. Sci., 2015, vols. 49–50, p. 34.

    Article  CAS  Google Scholar 

  18. Kilicli, V., Yan, X., Salowitz, N., and Rohatgi, P.K., JOM, 2018, vol. 70, no. 6, p. 846. https://doi.org/10.1007/s11837-018-2835-y

    Article  CAS  Google Scholar 

  19. He, J., Song, F., Li, X., Chen, L., Gong, X., and Tu, W., J. Polym. Res., 2021, vol. 28, no. 4, p. 1. https://doi.org/10.1007/s10965-021-02433-0

    Article  CAS  Google Scholar 

  20. Dahlke, J., Zechel, S., Hager, M.D., and Schubert, U.S., Adv. Mater. Interfaces, 2018, vol. 5, no. 17, p. 1800051. https://doi.org/10.1002/admi.201800051

    Article  Google Scholar 

  21. White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., et al., Nature, 2001, vol. 409, p. 794. https://www.nature.com/articles/ 35057232.pdf.

    Article  CAS  Google Scholar 

  22. Hager, B.M.D., Greil, P., Leyens, C., Van Der Zwaag, S., and Schubert, U.S., Adv. Mater., 2010, vol. 22, no. 47, p. 5424.

    Article  CAS  Google Scholar 

  23. Song, M.M., Wang, Y.M., Liang, X.Y., Zhang, X.Q., Zhang, S., and Li, B.J., Soft Matter, 2019, vol. 15, no. 33, p. 6615.

    Article  CAS  Google Scholar 

  24. Bode, S., Enke, M., Hernandez, M., Bose, R.K., Grande, A.M., van der Zwaag, S., et al., Adv. Polym. Sci., 2016, vol. 273, p. 113.

    Article  CAS  Google Scholar 

  25. Nosonovsky, M. and Rohatgi, P.K., Biomimetics in Materials Science: Self-Healing, Self-Lubricating, and Self-Cleaning Materials, Springer, 2012, vol. 1, p. 24. http://www.tandfonline.com/doi/full/10.3109/00016925709169517.

    Book  Google Scholar 

  26. Zheng, X.G., Shi, Y.-N., and Lu, K., Mater. Sci. Eng., A, 2013, vol. 561, p. 52. https://linkinghub.elsevier.com/ retrieve/pii/S0921509312015158.

    Article  CAS  Google Scholar 

  27. Ferguson, J.B., Schultz, B.F., and Rohatgi, P.K., JOM, 2014, vol. 66, no. 6, p. 866.

    Article  CAS  Google Scholar 

  28. Yuan, D., Bonab, V.S., Patel, A., and Manas-Zloczower, I., Polymer, 2018, vol. 147, p. 196.

    Article  CAS  Google Scholar 

  29. Wang, S. and Urban, M.W., Nat. Rev. Mater., 2020, vol. 5, no. 8, p. 562. https://doi.org/10.1038/s41578-020-0202-4

    Article  CAS  Google Scholar 

  30. Li, S., Song, G., Kwakernaak, K., van der Zwaag, S., and Sloof, W.G., J. Eur. Ceram. Soc., 2012, vol. 32, no. 8, p. 1813.

    Article  CAS  Google Scholar 

  31. Maruoka, D. and Nanko, M., Ceram. Int., 2013, vol. 39, no. 3, p. 3221. https://doi.org/10.1016/j.ceramint.2012.10.008

    Article  CAS  Google Scholar 

  32. Martínez Lucci, J., Amano, R.S., and Rohatgi, P.K., Heat Mass Transfer, 2017, vol. 53, no. 3, p. 825. Martínez Lucci, J., Amano, R.S., and Rohatgi, P.K., Waerme-Stoffuebertrag. (1995-), 2017, vol. 53, no. 3, p. 825.

  33. Alaneme, K.K. and Bodunrin, M.O., Appl. Mater. Today, 2017, vol. 6, p. 9. https://doi.org/10.1016/j.apmt.2016.11.002

    Article  Google Scholar 

  34. Haider, M.I., Rezaee, M., Yazdi, A., and Salowitz, N., Smart Mater. Struct., 2019, vol. 28, no. 10, p. 105044. https://iopscience.iop.org/article/10.1088/1361-665X/ ab3ad4.

    Article  CAS  Google Scholar 

  35. Haider, M.I., Yazdi, A., Rezaee, M., Tsai, L.C., and Salowitz, N., Proc. ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Louisville, KY, 2019. https://doi.org/10.1115/SMASIS2019-5619.

  36. Wool, R.P., Soft Matter, 2008, vol. 4, no. 3, p. 400.

    Article  CAS  Google Scholar 

  37. Bekas, D.G., Tsirka, K., Baltzis, D., and Paipetis, A.S., Composites, Part B, 2016, vol. 87, p. 92.

    Article  CAS  Google Scholar 

  38. Kanu, N.J., Gupta, E., Vates, U.K., and Singh, G.K., Composites, Part A, 2019, vol. 121, p. 474.

    Article  CAS  Google Scholar 

  39. Kumar, R., Hynes, N.R.J., Manju, R., Senthamaraikannan, P., Saravanakumar, S.S., Khan, A., et al., in Self-Healing Composite Materials, Elsevier, 2020, p. 393. https://doi.org/10.1016/B978-0-12-817354-1.00020-X

  40. Hao, Y., Zhao, Y., Yang, X., Hu, B., Ye, S., Song, L., et al., Corros. Sci., 2019, vol. 151, p. 175.

    Article  CAS  Google Scholar 

  41. Wang, Q., Wang, W., Ji, X., Hao, X., Ma, C., Hao, W., et al., ACS Appl. Mater. Interfaces, 2021, vol. 13, no. 2, p. 3139.

    Article  CAS  Google Scholar 

  42. Zheludkevich, M.L., Tedim, J., and Ferreira, M.G.S., Electrochim. Acta, 2012, vol. 82, p. 314. https://doi.org/10.1016/j.electacta.2012.04.095

    Article  CAS  Google Scholar 

  43. Wei, H., Wang, Y., Guo, J., Shen, N.Z., Jiang, D., Zhang, X., et al., J. Mater. Chem. A, 2015, vol. 3, no. 2, p. 469. https://doi.org/10.1039/C4TA04791E

    Article  CAS  Google Scholar 

  44. Aliofkhazraei, M., in Handbook of Smart Coatings for Materials Protection, Elsevier, 2014, p. 198.

    Google Scholar 

  45. An, S., Lee, M.W., Yarin, A.L., and Yoon, S.S., Chem. Eng. J., 2018, vol. 344, p. 206. https://doi.org/10.1016/j.cej.2018.03.040

    Article  CAS  Google Scholar 

  46. Ferreira, C.D. and Nunes, I.L., Nanoscale Res. Lett., 2019, vol. 14, p. 9. https://doi.org/10.1186/s11671-018-2829-2

    Article  CAS  Google Scholar 

  47. Nuruzzaman, M., Rahman, M.M., Liu, Y., and Naidu, R., J. Agric Food Chem., 2016, vol. 64, no. 7, p. 1447.

    Article  CAS  Google Scholar 

  48. Cano-Sarabia, M. and Maspoch, D., in Nanoencapsulation - Encyclopedia of Nanotechnology, Bhushan, B., Ed., Dordrecht: Springer, 2014, p. 1. https://doi.org/10.1007/978-94-007-6178-0_50-2.

  49. Tyagi, V.V., Kaushik, S.C., Tyagi, S.K., and Akiyama, T., Renewable Sustainable Energy Rev., 2011, vol. 15, p. 1373.

    Article  CAS  Google Scholar 

  50. Cárdenas-Ramírez, C., Jaramillo, F., and Gómez, M., J. Energy Storage, 2020, vol. 30, no. 52, p.101495. https://doi.org/10.1016/j.est.2020.101495

    Article  Google Scholar 

  51. Jamekhorshid, A., Sadrameli, S.M., and Farid, M., Renewable Sustainable Energy Rev., 2014, vol. 31, p. 531. https://doi.org/10.1016/j.rser.2013.12.033

    Article  CAS  Google Scholar 

  52. Ahangaran, F., Navarchian, A.H., and Picchioni, F., J. Appl. Polym. Sci., 2019, vol. 136, no. 41, p. 48039.

    Article  CAS  Google Scholar 

  53. Siva, T. and Sathiyanarayanan, S., Prog. Org. Coat., 2015, vol. 82, p. 7. https://doi.org/10.1016/j.porgcoat.2015.01.010

    Article  CAS  Google Scholar 

  54. Hettiarachchi, N.M., De Silva, R.T., Gayanath Mantilaka, M.G.P., Pasbakhsh, P., De Silva, K.M.N., and Amaratunga, G.A.J., RSC Adv., 2019, vol. 9, no. 41, p. 23666. http://xlink.rsc.org/?DOI=C9RA03804C.

  55. Kim, D.M., Yu, H.C., Yang, H.I., Cho, Y.J., Lee, K.M., and Chung, C.M., Materials, 2017, vol. 10, no. 2, p. 114. https://doi.org/10.3390/ma10020114

    Article  CAS  Google Scholar 

  56. Cordeiro Neto, A.G., Pellanda, A.C., de Carvalho Jorge, A.R., Floriano, J.B., and Coelho Berton, M.A., Prog. Org. Coat., 2020, vol. 147, p.105874. https://doi.org/10.1016/j.porgcoat.2020.105874

    Article  CAS  Google Scholar 

  57. Sørensen, G., Nielsen, A.L., Pedersen, M.M., Poulsen, S., Nissen, H., Poulsen, M., et al., Prog. Org. Coat., 2010, vol. 68, no. 4, p. 299.

    Article  CAS  Google Scholar 

  58. Nosonovsky, M. and Rohatgi, P.K., Biomimetics in Materials Science: Self-Healing, Self-Lubricating, and Self-Cleaning Materials, vol. 152 of Springer Series in Materials Science, Springer, 2012, p. 1.

  59. Ciriminna, R., Sciortino, M., Alonzo, G., De Schrijver, A., and Pagliaro, M., Chem. Rev., 2011, vol. 111, no. 2, p. 765.

    Article  CAS  Google Scholar 

  60. Bakry, A.M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M.Y., Mousa, A., et al., Compr. Rev. Food Sci. Food Saf., 2016, vol. 15, no. 1, p. 143.

    Article  CAS  Google Scholar 

  61. Ghosh, S.K., in Functional Coatings, Weinheim: Wiley-VCH, 2006, p. 1. http://doi.wiley.com/10.1002/ 3527608478.ch1.

    Book  Google Scholar 

  62. Jafari, S.M., in Nanoencapsulation Technologies for the Food and Nutraceutical Industries, Elsevier, 2017, p. 1.

    Google Scholar 

  63. Tan, S., Chan, A.P.C., and Li, P., Ind. Eng. Chem. Res., 2019, vol. 58, no. 46, p. 21080.

    Article  CAS  Google Scholar 

  64. Soh, S.H. and Lee, L.Y., Pharmaceutics, 2019, vol. 11, no. 1, p. 21. https://doi.org/10.3390/pharmaceutics11010021

    Article  CAS  Google Scholar 

  65. Mohammed, N.K., Tan, C.P., Manap, Y.A., Muhialdin, B.J., and Hussin, A.S.M., Molecules, 2020, vol. 25, no. 17, p. 1.

    Google Scholar 

  66. Loiseau, E., Niedermair, F., Albrecht, G., Frey, M., Hauser, A., Rühs, P.A., et al., Langmuir, 2017, vol. 33, no. 9, p. 2402.

    Article  CAS  Google Scholar 

  67. You, X., Wang, B., Xie, S., Li, L., Lu, H., Jin, M., et al., Nanomaterials, 2020, vol. 10, no. 2, p. 274. https://doi.org/10.3390/nano10020274

    Article  CAS  Google Scholar 

  68. Soh, S.H. and Lee, L.Y., Pharmaceutics, 2019, vol. 11, no. 1, p. 21. https://www.mdpi.com/1999-4923/11/1/21.

    Article  CAS  Google Scholar 

  69. Fu, S., Niu, H., Tao, Z., Song, J., Mao, C., Zhang, S., et al., J. Alloys Compd., 2013, vol. 576, p. 5. https://doi.org/10.1016/j.jallcom.2013.04.092

    Article  CAS  Google Scholar 

  70. Pawar, K.K., Chaudhary, L.S., Mali, S.S., Bhat, T.S., Sheikh, A.D., Hong, C.K., et al., J. Colloid Interface Sci., 2020, vol. 561, p. 287. https://doi.org/10.1016/j.jcis.2019.10.101

    Article  CAS  Google Scholar 

  71. Haynes, T., Bougnouch, O., Dubois, V., and Hermans, S., Microporous Mesoporous Mater., 2020, vol. 306, p. 110400. https://doi.org/10.1016/j.micromeso.2020.110400

    Article  CAS  Google Scholar 

  72. Chen, Y., Li, Z., Cui, F., Ma, Q., Zhang, J., Xu, X., et al., Mater. Lett., 2020, vol. 264, p. 127359. https://doi.org/10.1016/j.matlet.2020.127359

    Article  CAS  Google Scholar 

  73. Tadros, T.F., Emulsion Science and Technology, Wiley-VCH, 2009, p. 1.

    Book  Google Scholar 

  74. Che, Z., Wong, T.N., and Nguyen, N.T., Microfluid. Nanofluid., 2017, vol. 21, no. 1, p. 1.

    Article  CAS  Google Scholar 

  75. Garti, N. and Bisperink, C., Curr. Opin. Colloid Interface Sci., 1998, vol. 3, no. 6, p. 657.

    Article  CAS  Google Scholar 

  76. Silva, A.C.M., Moghadam, A.D., Singh, P., and Rohatgi, P.K., J. Coat. Technol. Res., 2017, p. 1. https://doi.org/10.1007/s11998-016-9879-0

  77. Yildirim, M., Sumnu, G., and Sahin, S., J. Dispersion Sci. Technol., 2017, vol. 38, no. 6, p. 807. https://doi.org/10.1080/01932691.2016.1201768

    Article  CAS  Google Scholar 

  78. Schmidts, T., Dobler, D., Nissing, C., and Runkel, F., J. Colloid Interface Sci., 2009, vol. 338, no. 1, p. 184.

    Article  CAS  Google Scholar 

  79. Li, W., Matyjaszewski, K., Albrecht, K., and Möller, M., Macromolecules, 2009, vol. 42, no. 21, p. 8228.

    Article  CAS  Google Scholar 

  80. Ahangaran, F., Navarchian, A.H., Hayaty, M., and Esmailpour, K., Smart Mater. Struct., 2016, vol. 25, no. 9, p. 095035.

    Article  CAS  Google Scholar 

  81. Nguon, O., Lagugné-Labarthet, F., Brandys, F.A., Li, J., and Gillies E.R., Polym. Rev., 2018, vol. 58, no. 2, p. 326. https://doi.org/10.1080/15583724.2017.1364765

    Article  CAS  Google Scholar 

  82. Rule, J.D., Sottos, N.R., and White, S.R., Polymer (Guildf.), 2007, vol. 48, no. 12, p. 3520.

    Article  CAS  Google Scholar 

  83. Sauvant-Moynot, V., Gonzalez, S., and Kittel, J., Prog. Org. Coat., 2008, vol. 63, no. 3, p. 307.

    Article  CAS  Google Scholar 

  84. Adekunle, K.F., Open J. Polym. Chem., 2015, vol. 05, no. 03, p. 34. http://www.scirp.org/journal/doi.aspx? DOI=10.4236/ojpchem.2015.53004.

    CAS  Google Scholar 

  85. Orsavova, J., Misurcova, L., Ambrozova, J., Vicha, R., and Mlcek, J., Int. J. Mol. Sci., 2015, vol. 16, no. 12, p. 12871. http://www.mdpi.com/1422-0067/16/6/12871.

    Article  CAS  Google Scholar 

  86. Ataei, S., Khorasani, S.N., and Neisiany, R.E., Prog. Org. Coat., 2019, vol. 129, p. 77. https://doi.org/10.1016/j.porgcoat.2019.01.012

    Article  CAS  Google Scholar 

  87. Meaney, S.P., Tabor, R.F., and Follink, B., J. Colloid Interface Sci., 2017, vol. 505, p. 664. https://doi.org/10.1016/j.jcis.2017.06.026

    Article  CAS  Google Scholar 

  88. Jia, Y., Wang, H., Tian, K., Li, R., Xu, Z., Jiao, J., et al., Int. J. Smart Nano Mater., 2016, vol. 7, no. 4, p. 221. https://doi.org/10.1080/19475411.2016.1261954

    Article  Google Scholar 

  89. Pourmohamadian, H., Sheikhzadeh, G.A., Rahimi-Nasrabadi, M., and Tabrizi, H.B., J. Mater. Sci.: Mater. Electron., 2017, vol. 28, no. 14, p. 9990.

    CAS  Google Scholar 

  90. Li, H., Li, S., Li, F., Li, Z., and Wang, H., J. Colloid Interface Sci., 2018, vol. 528, p. 92. https://doi.org/10.1016/j.jcis.2018.05.081

    Article  CAS  Google Scholar 

  91. Wu, G., An, J., Sun, D., Tang, X., Xiang, Y., and Yang, J., J. Mater. Chem. A, 2014, vol. 2, no. 30, p. 11614. http://xlink.rsc.org/?DOI=C4TA01312C.

    Article  CAS  Google Scholar 

  92. Tsuneyoshi, T., Cui, Y., Ishida, H., Watanabe, T., and Ono, T., Langmuir, 2019, vol. 35, no. 41, p. 13311. https://pubs.acs.org/doi/10.1021/acs.langmuir.9b00181.

    Article  CAS  Google Scholar 

  93. Zhang, X., Wang, P., Sun, D., Li, X., An, J., Yu, T.X., et al., J. Mech. Phys. Solids, 2020, vol. 139, p. 103933. https://linkinghub.elsevier.com/retrieve/pii/S0022509620301691.

    Article  CAS  Google Scholar 

  94. Sun, D., Zhang, H., Zhang, X., and Yang, J., ACS Appl. Mater. Interfaces, 2019, vol. 11, no. 9, p. 9621. https://pubs.acs.org/doi/10.1021/acsami.9b00827.

    Article  CAS  Google Scholar 

  95. Li, M., Liu, J., and Shi, J., Sol. Energy, 2018, vol. 167, p. 158.

    Article  CAS  Google Scholar 

  96. Galgali, G., Schlangen, E., and Van Der Zwaag, S., Mater. Res. Bull., 2011, vol. 46, no. 12, p. 2445. https://doi.org/10.1016/j.materresbull.2011.08.028

    Article  CAS  Google Scholar 

  97. Chen, H., He, J., Tang, H., and Yan, C., Chem. Mater., 2008, vol. 20, no. 18, p. 5894.

    Article  CAS  Google Scholar 

  98. Khan, A., Zia-ur-Rehman, Muneeb-ur-Rehman, Khan, R., Zulfiqar, Waseem, A., et al., Inorg. Chem. Commun., 2016, vol. 72, p. 33.

    Article  CAS  Google Scholar 

  99. Zhang, C., Yan, H., Lv, K., and Yuan, S., Colloids Surf., A, 2013, vol. 424, p. 59. https://doi.org/10.1016/j.colsurfa.2013.02.014

    Article  CAS  Google Scholar 

  100. Jiang, S., Mottola, M., Han, S., Thiramanas, R., Graf, R., Lieberwirth, I., et al., Part. Part. Syst. Charact., 2020, vol. 37, no. 4, p. 1900484.

    Article  CAS  Google Scholar 

  101. Li, J., Liu, J., Wang, D., Guo, R., Li, X., and Qi, W., Langmuir, 2010, vol. 26, no. 18, p. 12267.

    Article  CAS  Google Scholar 

  102. Teng, Z., Han, Y., Li, J., Yan, F., and Yang, W., Microporous Mesoporous Mater., 2010, vol. 127, nos. 1–2, p. 67. https://doi.org/10.1016/j.micromeso.2009.06.028

    Article  CAS  Google Scholar 

  103. Wibowo, D., Zhao, C.X., and Middelberg, A.P.J., Chem. Commun., 2014, vol. 50, no. 77, p. 11325.

    Article  CAS  Google Scholar 

  104. Jakhmola, A., Vecchione, R., Guarnieri, D., Belli, V., Calabria, D., and Netti, P.A., Adv. Healthcare Mater., 2015, vol. 4, no. 17, p. 2688.

    Article  CAS  Google Scholar 

  105. Li, H., Cui, Y., Wang, H., Zhu, Y., and Wang, B., Colloids Surf., A, 2017, vol. 518, p. 181. https://doi.org/10.1016/j.colsurfa.2017.01.046

    Article  CAS  Google Scholar 

  106. Panisello, C., Peña, B., Gumí, T., and Garcia-Valls, R., J. Appl. Polym. Sci., 2013, vol. 129, no. 3, p. 1625. http://doi.wiley.com/10.1002/ap. 38868.

  107. Elbaz, N.M., Owen, A., Rannard, S., and McDonald, T.O., Int. J. Pharm., 2020, vol. 574, p. 118866. https://doi.org/10.1016/j.ijpharm.2019.118866

    Article  CAS  Google Scholar 

  108. Sun, J., Wang, Y., Li, N., and Tian, L., Tribol. Int., 2019, vol. 136, p. 332.

    Article  CAS  Google Scholar 

  109. Sari, A., Alkan, C., Döğüşcü, D.K., and Kizil, C., Sol. Energy, 2015, vol. 115, p. 195.

    Article  CAS  Google Scholar 

  110. Kardar, P., Prog. Org. Coat., 2015, vol. 89, p. 271.

    Article  CAS  Google Scholar 

  111. Gite, V.V., Tatiya, P.D., Marathe, R.J., Mahulikar, P.P., and Hundiwale, D.G., Prog. Org. Coat., 2015, vol. 83, p. 11.

    Article  CAS  Google Scholar 

  112. Ahangaran, F., Hayaty, M., and Navarchian, A.H., Appl. Surf. Sci., 2017, vol. 399, p. 721.

    Article  CAS  Google Scholar 

  113. Deng, S., Gigliobianco, M.R., Censi, R., and Di Martino, P., Nanomaterials (Basel), 2020, vol. 10, no. 5, p. 847.

    Article  CAS  Google Scholar 

  114. Bollhorst, T., Rezwan, K., and Maas, M., Chem. Soc. Rev., 2017, vol. 46, no. 8, p. 2091.

    Article  CAS  Google Scholar 

  115. Shahabudin, N., Yahya, R., and Gan, S.N., Mater. Today: Proc., 2016, vol. 3, p. S88.

    Google Scholar 

  116. Baxter, G., in Microencapsulation Processes and Applications, Vandegaer, J.E., Ed., Boston, MA: Springer, 1974, p. 127.

    Google Scholar 

  117. Huang, M. and Yang, J., J. Mater. Chem., 2011, vol. 21, no. 30, p. 11123.

    Article  CAS  Google Scholar 

  118. Whites, S.R., Brown, E.N., Kessler, M.R., and Sottos, N.R., J. Microencapsulation, 2003, vol. 20, no. 6, p. 719.

    Article  Google Scholar 

  119. Yi, H., Deng, Y., and Wang, C., Compos. Sci. Technol., 2016, vol. 133, p. 51. https://doi.org/10.1016/j.compscitech.2016.07.022

    Article  CAS  Google Scholar 

  120. Cai, X., Fu, D., and Qu, A., Sci. Eng. Compos. Mater., 2017, vol. 24, no. 1, p. 155. https://www.degruyter. com/doi/10.1515/secm-2014-0469.

    Article  CAS  Google Scholar 

  121. Lang, S. and Zhou, Q., Prog. Org. Coat., 2017, vol. 105, p. 99. https://doi.org/10.1016/j.porgcoat.2016.11.015

    Article  CAS  Google Scholar 

  122. Cotting, F. and Aoki, I.V., Surf. Coat. Technol., 2016, vol. 303, part B, p. 310. https://doi.org/10.1016/j.surfcoat.2015.11.035

  123. Sadrabadi, T.E., Allahkaram, S.R., Staab, T., and Towhidi, N., Polym. Sci., Ser. B, 2017, vol. 59, no. 3, p. 281.

    Article  CAS  Google Scholar 

  124. Lee Hia, I., Chan, E.-S., Chai, S.-P., and Pasbakhsh, P., J. Mater. Chem. A, 2018, vol. 6, no. 18, p. 8470. http://xlink.rsc.org/?DOI=C8TA01783B.

    Article  CAS  Google Scholar 

  125. Li, Q., Siddaramaiah, Kim, N.H., Hui, D., and Lee, J.H., Composites, Part B, 2013, vol. 55, p. 79.

    Article  CAS  Google Scholar 

  126. Kim, D.M., Cho, Y.J., Choi, J.Y., Kim, B.J., Jin, S.W., and Chung, C.M., Materials, 2017, vol. 10, no. 9, p.1079. https://doi.org/10.3390/ma10091079

    Article  CAS  Google Scholar 

  127. Cho, S.H., White, S.R., and Braun, P.V., Adv. Mater., 2009, vol. 21, no. 6, p. 645.

    Article  CAS  Google Scholar 

  128. Manoj, A., Ramachandran, R., and Menezes, P.L., Int. J. Adv. Manuf. Technol., 2020, vol. 106, nos. 5–6, p. 2119.

    Article  Google Scholar 

  129. Kothamasu, P., Kanumur, H., Ravur, N., Maddu, C., Parasuramrajam, R., and Thangavel, S., BioImpacts, 2012, vol. 2, no. 2, p. 71.

    CAS  Google Scholar 

  130. Behzadnasab, M., Mirabedini, S.M., Esfandeh, M., and Farnood, R.R., Prog. Org. Coat., 2017, vol. 105, p. 212. https://doi.org/10.1016/j.porgcoat.2017.01.006

    Article  CAS  Google Scholar 

  131. Hasanzadeh, M., Shahidi, M., and Kazemipour, M., Prog. Org. Coat., 2015, vol. 80, p. 106. https://doi.org/10.1016/j.porgcoat.2014.12.002

    Article  CAS  Google Scholar 

  132. Szabó, T., Telegdi, J., and Nyikos, L., Prog. Org. Coat., 2015, vol. 84, p. 136. https://doi.org/10.1016/j.porgcoat.2015.02.020

    Article  CAS  Google Scholar 

  133. Wang, H. and Zhou, Q., Prog. Org. Coat., 2018, vol. 118, p. 108. https://doi.org/10.1016/j.porgcoat.2018.01.024

    Article  CAS  Google Scholar 

  134. Suryanarayana, C., Rao, K.C., and Kumar, D., Prog. Org. Coat., 2008, vol. 63, no. 1, p. 72.

    Article  CAS  Google Scholar 

  135. Behzadnasab, M., Mirabedini, S.M., Esfandeh, M., and Farnood, R.R., Prog. Org. Coat., 2017, vol. 105, p. 212. https://doi.org/10.1016/j.porgcoat.2017.01.006

    Article  CAS  Google Scholar 

  136. Szabó, T., Telegdi, J., and Nyikos, L., Prog. Org. Coat., 2015, vol. 84, p. 136. https://doi.org/10.1016/j.porgcoat.2015.02.020

    Article  CAS  Google Scholar 

  137. Kurt Çömlekçi, G. and Ulutan, S., Prog. Org. Coat., 2019, vol. 129, p. 292. https://doi.org/10.1016/j.porgcoat.2019.01.022

    Article  CAS  Google Scholar 

  138. Wang, H. and Zhou, Q., Prog. Org. Coat., 2018, vol. 118, p. 108. https://doi.org/10.1016/j.porgcoat.2018.01.024

    Article  CAS  Google Scholar 

  139. Yang, H., Mo, Q., Li, W., and Gu, F., Polymers, 2019, vol. 11, no. 10, p. 1578. https://doi.org/10.3390/polym11101578

    Article  CAS  Google Scholar 

  140. Li, H., Feng, Y., Cui, Y., Ma, Y., Zheng, Z., Qian, B., et al., Prog. Org. Coat., 2020, vol. 145, p. 105684.

    Article  CAS  Google Scholar 

  141. Dong, J., Pan, W., Luo, J., and Liu, R., Electrochim. Acta, 2020, vol. 364, p. 137299.

    Article  CAS  Google Scholar 

  142. Li, K., Liu, Z., Wang, C., Fan, W., Liu, F., Li, H., et al., Prog. Org. Coat., 2020, vol. 145, p. 105668.

    Article  CAS  Google Scholar 

  143. de Souza Rodrigues, V.H., Estêvão Carrara, A., Rossi, S.S., Mattos Silva, L., de Cássia Lazzarini Dutra, R., and Dutra, J.C.N., Mater. Today Commun., 2019, vol. 21, p. 100698.

    Article  CAS  Google Scholar 

  144. Sun, D., Chong, Y.B., Chen, K., and Yang, J., Chem. Eng. J., 2018, vol. 346, p. 289.

    Article  CAS  Google Scholar 

  145. García, S.J., Fischer, H.R., White, P.A., Mardel, J., González-García, Y., Mol, J.M.C., et al., Prog. Org. Coat., 2011, vol. 70, nos. 2–3, p. 142.

    Article  CAS  Google Scholar 

  146. Pilbáth, A., Szabó, T., Telegdi, J., and Nyikos, L., Prog. Org. Coat., 2012, vol. 75, no. 4, p. 480. https://doi.org/10.1016/j.porgcoat.2012.06.006

    Article  CAS  Google Scholar 

  147. Kouhi, M., Mohebbi, A., Mirzaei, M., and Peikari, M., Prog. Org. Coat., 2013, vol. 76, nos. 7–8, p. 1006. https://doi.org/10.1016/j.porgcoat.2013.02.014

    Article  CAS  Google Scholar 

  148. Khun, N.W., Sun, D.W., Huang, M.X., Yang, J.L., and Yue, C.Y., Wear, 2014, vol. 313, nos. 1–2, p. 19. https://doi.org/10.1016/j.wear.2014.02.011

    Article  CAS  Google Scholar 

  149. Shisode, P.S., Patil, C.B., and Mahulikar, P.P., Polym.-Plast. Technol. Eng., 2018, vol. 57, no. 13, p. 1334. https://doi.org/10.1080/03602559.2017.1381248

    Article  CAS  Google Scholar 

  150. Li, H., Cui, Y., Li, Z., Zhu, Y., and Wang, H., Prog. Org. Coat., 2018, vol. 115, p. 164. https://doi.org/10.1016/j.porgcoat.2017.11.019

    Article  CAS  Google Scholar 

  151. Eivaz Mohammadloo, H., Mirabedini, S.M., and Pezeshk-Fallah, H., Prog. Org. Coat., 2019, vol. 137, p.105339. https://doi.org/10.1016/j.porgcoat.2019.105339

    Article  CAS  Google Scholar 

  152. Sharma, A., Pandey, A., Shukla, D.K., and Pandey, K.N., Mater. Today: Proc., 2018, vol. 5, no. 10, p. 21256. https://doi.org/10.1016/j.matpr.2018.06.526

    Article  CAS  Google Scholar 

  153. Brown, E.N., White, S.R., and Sottos, N.R., J. Mater. Sci., 2004, vol. 39, no. 5, p. 1703.

    Article  CAS  Google Scholar 

  154. Haghayegh, M., Mirabedini, S.M., and Yeganeh, H., RSC Adv., 2016, vol. 6, no. 56, p. 50874.

    Article  CAS  Google Scholar 

  155. Kosarli, M., Bekas, D.G., Tsirka, K., Baltzis, D., Vaimakis-Tsogkas, D., Orfanidis, S., et al., Composites, Part B, 2019, vol. 171, p. 78. https://doi.org/10.1016/j.compositesb.2019.04.030

    Article  CAS  Google Scholar 

  156. Khun, N.W., Zhang, H., Yang, J.L., and Liu, E., Wear, 2012, vol. 296, nos. 1–2, p. 575. https://doi.org/10.1016/j.wear.2012.07.029

    Article  CAS  Google Scholar 

  157. Xu, X., Liu, H., Li, W., and Zhu, L., Mater. Lett., 2011, vol. 65, no. 4, p. 698. https://doi.org/10.1016/j.matlet.2010.11.024

    Article  CAS  Google Scholar 

  158. Xu, X.Q., Zhu, L.Q., Li, W.P., and Liu, H.C., Trans. Nonferrous Met. Soc. China, 2011, vol. 21, no. 10, p. 2210. https://doi.org/10.1016/S1003-6326(11)60997-7

    Article  CAS  Google Scholar 

  159. Liqun, Z., Wei, Z., Feng, L., and He, Y., J. Mater. Sci., 2004, vol. 39, no. 2, p. 495.

    Article  Google Scholar 

  160. Alexandridou, S., Kiparissides, C., Fransaer, J., and Celis, J.P., Surf. Coat. Technol., 1995, vol. 71, no. 3, p. 267.

    Article  CAS  Google Scholar 

  161. Kentepozidou, A., Kiparissides, C., Kotzia, F., Kollia, C., and Spyrellis, N., J. Mater. Sci., 1996, vol. 31, no. 5, p. 1175.

    Article  CAS  Google Scholar 

  162. Aruna, S.T., Arunima, S., Latha, S., and William Grips, V.K., Mater. Manuf. Processes, 2016, vol. 31, no. 1, p. 107.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Reza Allahkaram.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadabadi, H., Allahkaram, S.R., Kordijazi, A. et al. Self-healing Coatings Loaded by Nano/microcapsules: A Review. Prot Met Phys Chem Surf 58, 287–307 (2022). https://doi.org/10.1134/S2070205122020162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205122020162

Keywords:

Navigation