Skip to main content
Log in

First-principles calculation of the phonon frequencies in γ Fe

  • Lattice Dynamics. Phase Transmissions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The total energy, the equilibrium lattice constant, and the bulk modulus of the fcc phase of iron have been calculated by the full-potential LMTO method. The use of a generalized gradient approximation in the calculation of the electronic structure and lattice properties of γ-Fe is discussed. Next, the transverse phonon frequency at the W point of the Brillouin zone of a fcc lattice is calculated by the “frozen-phonon” method in the harmonic approximation. A local minimum has been found in the curve of the variation of the total energy of the system as a function of the amplitude of the atomic displacements corresponding to the chosen normal mode. To take account of anharmonic effects, a pseudoharmonic approximation is used and an effective potential that approximates the curve of the variation of the total energy of the system and depends on the temperature via the correlation function of the mean-square displacement of atoms from their equilibrium positions is constructed. The theoretical temperature dependence of the effective frequency of the phonon mode responsible for the structural phase transition corresponds qualitatively to the experimentally observed dependence. A new interpretation is given for the structural phase transition as a transition of the corresponding phonon mode from the excited to the ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Vonsovskii, M. I. Katsnel’son, and A. V. Trefilov, Fiz. Met. Metalloved. 76, 3 (1993).

    Google Scholar 

  2. F. Ducastelle in Order and Phase Stability in Alloys. Cohesion and Structure, edited by F. de Boer and D. Pettifor, North-Holland, Amsterdam, 1991, Vol. 3.

    Google Scholar 

  3. T. Kraft, P. M. Marcus, M. Methfessel, and M. Scheffler, Phys. Rev. B 48, 5886 (1993).

    Article  ADS  Google Scholar 

  4. P. E. A. Turchi, L. Reinhard, and G. M. Stocks, Phys. Rev. B 50, 15542 (1994).

    Google Scholar 

  5. V. G. Vaks, Introduction to the Microscopic Theory of Ferroelectrics [in Russian], Nauka, Moscow, 1973.

    Google Scholar 

  6. V. L. Aksenov, N. M. Plakida, and S. Stamenkovich, Neutron Scattering by Ferroelectrics [in Russian], Énergoatomizdat, Moscow, 1984.

    Google Scholar 

  7. R. Car and M. Parinello, Phys. Rev. Lett. 55, 2471 (1985); I. Stich, R. Car, and M. Parinello, Phys. Rev. B 44, 11092 (1991); M. P. Grambuch, D. Hohl, R. M. Martin, and R. Car, J. Phys.: Cond Matter 6, 1999 (1994).

    Article  ADS  Google Scholar 

  8. L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982); D. R. Hamann, Phys. Rev. B 40, 2980 (1989).

    Article  ADS  Google Scholar 

  9. P. E. Blochl, Phys. Rev. B 50, 17953 (1994).

    Google Scholar 

  10. V. V. Nemoshkalenko and V. N. Antonov, Methods of Computational Physics in Solid-State Theory. Band Theory of Metals [in Russian], Naukova dumka, Kiev, 1985.

    Google Scholar 

  11. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    ADS  MathSciNet  Google Scholar 

  12. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    ADS  MathSciNet  Google Scholar 

  13. S. Lundqvist and N. H. March [Eds.], Theory of the Inhomogeneous Electron Gas, Plenum Press, N. Y., 1983 [Russian translation, Mir, Moscow, 1987].

    Google Scholar 

  14. H. Wendel and R. M. Martin, Phys. Rev. B 19, 5251 (1979); P. K. Lam and M. L. Cohen, Phys. Rev. B 25, 6139 (1982); K.-M. Ho, C. L. Fu, and B. N. Harmon, Phys. Rev. B 29, 1575 (1984).

    Article  ADS  Google Scholar 

  15. N. E. Zein, Fiz. Tverd. Tela (Leningrad) 26, 3025 (1984) [Sov. Phys. Solid State 26, 1825 (1984)]; S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. 58, 1861 (1987).

    Google Scholar 

  16. S. Yu. Savrasov and D. Yu. Savrasov, Phys. Rev. B 46, 12181 (1992).

  17. S. Yu. Svrasov and E. G. Maksimov, Usp. Fiz. Nauk 165, 773 (1995).

    Google Scholar 

  18. M. Methfessel, Phys. Rev. B 38, 1537 (1988); M. Methfessel, C. O. Rodriguez, and O. K. Andersen, Phys. Rev. B 40, 2009 (1989).

    Article  ADS  Google Scholar 

  19. S. A. Ostanin, E. I. Salamatov, and V. G. Chudinov, Fiz. Tverd. Tela (St. Petersburg) 37, 2002 (1995) [Phys. Solid State 37, 1091 (1995)].

    Google Scholar 

  20. V. G. Pushin and V. V. Kondrat’ev, Fiz. Met. Metalloved. 78, 40 (1994).

    Google Scholar 

  21. V. P. Dmitriev, Yu. M. Gufan, and P. Toledano, Phys. Rev. B 44, 7248 (1991).

    Article  ADS  Google Scholar 

  22. P. Soderlind, J. A. Moriarty, and J. M. Wills, Phys. Rev. B 53, 14063 (1996).

    Google Scholar 

  23. O. N. Mryasov, A. I. Liechtenstein, L. M. Sandratskii, and V. A. Gubanov, J. Phys.: Cond. Matter 3, 7683 (1991).

    Article  ADS  Google Scholar 

  24. M. Uhl, L. M. Sandratskii, and J. Kubler, Phys. Rev. B 50, 291 (1994).

    Article  ADS  Google Scholar 

  25. S. A. Ostanin and V. P. Shirokovskii, J. Phys.: Cond. Matter 4, 479 (1992); S. A. Ostanin and V. P. Shirokovskii, J. Magn. Magn. Mater. 135, 135 (1994).

    Article  Google Scholar 

  26. J. P. Perdew and Y. Wwang, Phys. Rev. B 46, 13244 (1992); J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

    Google Scholar 

  27. D. J. Singh, W. E. Pickett, and H. Krakauer, Phys. Rev. B 43, 11628 (1991).

    Google Scholar 

  28. C. S. Wang, B. M. Klein, and H. Krakauer, Phys. Rev. Lett. 54, 1852 (1985).

    Article  ADS  Google Scholar 

  29. L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).

    Article  ADS  Google Scholar 

  30. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  ADS  Google Scholar 

  31. P. Dufek, P. Blaha, and K. Schwarz, Phys. Rev. B 50, 7279 (1994).

    Article  ADS  Google Scholar 

  32. E. I. Salamatov, Fiz. Tverd. Tela (Leningrad) 34, 2134 (1992) [Sov. Phys. Solid State 34, 1141 (1992)]; E. I. Salamatov, Phys. Status Solidi B 177, 75 (1993).

    Google Scholar 

  33. A. Zheludev et al., Phys. Rev. B 51, 11310 (1995).

  34. A. D. Bruce and R. A. Cowley, Structural Phase Transitions, Taylor and Francis, London, 1981 [Russian translation, Mir, Moscow, 1984].

    Google Scholar 

  35. J. A. Krumhansl and R. G. Gooding, Phys. Rev. B 39, 3047 (1989).

    Article  ADS  Google Scholar 

  36. M. C. Payn, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

    ADS  Google Scholar 

  37. E. I. Salamatov, Phys. Status Solidi B, (1996) in press.

  38. W. Petry, Phase Trans. B 31, 119 (1991).

    ADS  Google Scholar 

  39. I. Bakonyi, H. Ebert, and A. I. Liechtenstein, Phys. Rev. B 48, 7841 (1993); R. Ahuja, J. Wills, B. Johansson, and O. Eriksson, Phys. Rev. B 48, 16269 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 39, 171–175 (January 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostanin, S.A., Salamatov, E.I. & Kormilets, V.I. First-principles calculation of the phonon frequencies in γ Fe. Phys. Solid State 39, 148–152 (1997). https://doi.org/10.1134/1.1129816

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1129816

Keywords

Navigation