Skip to main content
Log in

Ab initio calculations of endo-and exohedral C60 fullerene complexes with Li+ ion and the endohedral C60 fullerene complex with Li2 dimer

  • Fullerenes and Atomic Clusters
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of ab initio Hartree-Fock calculations of endo-and exohedral C60 fullerene complexes with the Li+ ion and Li2 dimer are presented. The coordination of the Li+ ion and the Li2 dimer in the endohedral complexes and the coordination of Li+ ion in the exohedral complex of C60 fullerene are determined by the geometry optimization using the 3–21G basis set. In the endohedral Li+C60 complex, the Li+ ion is displaced from the center of the C60 cage to the centers of carbon hexa-and pentagons by 0.12 nm. In the Li2 dimer encapsulated inside the C60 cage, the distance between the lithium atoms is 0.02 nm longer than that in the free molecule. The calculated total and partial one-electron densities of states of C60 fullerene are in good agreement with the experimental photoelectron and X-ray emission spectra. Analysis of one-electron density of states of the endohedral Li+@C60 complex indicates an ionic bonding between the Li atoms and the C60 fullerene. In the Li+C60 and Li+@C60 complexes, there is a strong electrostatic interaction between the Li+ ion and the fullerene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Ramírez, Supercond. Rev. 1(1–2), 1 (1994).

    MATH  Google Scholar 

  2. Y. Wang and D. Tomanek, Chem. Phys. Lett. 208(1–2), 79 (1993).

    Google Scholar 

  3. J. Breton, J. González-Platas, and C. Girardet, J. Chem. Phys. 99(5), 4036 (1993).

    Article  ADS  Google Scholar 

  4. L. Pang and F. Brisse, J. Phys. Chem. 97(33), 8562 (1993).

    Article  Google Scholar 

  5. J. Cioslowski and E. D. Fleischmann, J. Chem. Phys. 94(5), 3730 (1991).

    Article  ADS  Google Scholar 

  6. A. H. H. Chang, W. C. Ermler, and R. M. Pitzer, J. Chem. Phys. 94(7), 5004 (1991).

    Article  ADS  Google Scholar 

  7. F. de Proft, C. van Alsenoy, and P. Geerlings, J. Phys. Chem. 100(18) 7440 (1996).

    Google Scholar 

  8. Y. Maruyama, K. Ohno, and K. Esfarjani, Sci. Rep. RITU A 41(2), 183 (1996).

    Google Scholar 

  9. T. Aree and S. Hannongbua, J. Phys. Chem. A 101, 5551 (1997).

    Article  Google Scholar 

  10. S. Patchkovskii and W. Thiel, J. Chem. Phys. 106(5), 1796 (1997).

    Article  ADS  Google Scholar 

  11. A. H. H. Chang, W. C. Ermler, and R. M. Pitzer, J. Chem. Phys. 95(23) 9288 (1991).

    Google Scholar 

  12. J. H. Weaver, Acc. Chem. Res. 25(3), 143 (1992).

    Article  MathSciNet  Google Scholar 

  13. L. G. Bulusheva, A. V. Okotrub, and N. E. Yudanov, J. Phys. Chem. A 101, 10018 (1997).

    Google Scholar 

  14. A. V. Okotrub, L. G. Bulusheva, and Yu. V. Shvetsov, Phys. Low-Dim. Struct. 5, 6, 103 (1997).

    Google Scholar 

  15. L. G. Bulusheva, Candidate’s Dissertation in Chemistry (Novosibirsk, 1998).

  16. M. W. Schmidt, K. K. Baldridge, and J. A. Boatz, J. Comp. Chem. 14, 1347 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 42, No. 2, 2000, pp. 378–382.

Original Russian Text Copyright © 2000 by Varganov, Avramov, Ovchinnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varganov, S.A., Avramov, P.V. & Ovchinnikov, S.G. Ab initio calculations of endo-and exohedral C60 fullerene complexes with Li+ ion and the endohedral C60 fullerene complex with Li2 dimer. Phys. Solid State 42, 388–392 (2000). https://doi.org/10.1134/1.1131218

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1131218

Keywords

Navigation