Skip to main content
Log in

Principal mode of the nonlinear spin-wave resonance in perpendicular magnetized ferrite films

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The paper reports a theoretical and experimental study of the nonlinear spin-wave resonance (SWR) modes in normally magnetized ferrite films. Particular attention is focused on the principal, lowest frequency, SWR mode. It is shown theoretically that, as the precession amplitude increases, the profile of the principal mode changes to make the excitation distribution across the film thickness more uniform. The nonlinear shift of the resonance field depends on the surface-spin pinning parameters. An experimental study has been made of YIG films with a strong uniaxial anisotropy field gradient over the film thickness, as well as of YIG films of submicron thickness. As the microwave power was increased, the principal-mode resonance field was observed undergoing a sublinear shift accompanied by a superlinear growth of absorbed power. This behavior is attributed to a change in the profile of the spatial distribution of ac magnetization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Suhl, J. Phys. Chem. Solids 1(4), 209 (1957).

    Google Scholar 

  2. M. T. Weiss, Phys. Rev. Lett. 1(7), 239 (1958).

    Article  ADS  Google Scholar 

  3. B. Lührmann, M. Ye, H. Dötsch, and A. Gerspach, J. Magn. Magn. Mater. 96, 237 (1991).

    Article  ADS  Google Scholar 

  4. Y. K. Fetisov, P. Kabos, and C. E. Patton, Electron. Lett. 32, 1894 (1996).

    Article  Google Scholar 

  5. A. G. Gurevich and G. A. Melkov, Magnetic Oscillations and Waves (Nauka, Moscow, 1994).

    Google Scholar 

  6. G. V. Skrotskii and Yu. A. Alimov, Zh. Éksp. Teor. Fiz. 35(6), 481 (1958).

    Google Scholar 

  7. G. V. Skrotskii and Yu. A. Alimov, Zh. Éksp. Teor. Fiz. 36(4), 1267 (1959) [Sov. Phys. JETP 9 (4), 899 (1959)].

    Google Scholar 

  8. C. Kittel, Phys. Rev. 110, 1295 (1958).

    ADS  MATH  MathSciNet  Google Scholar 

  9. G. T. Rado and J. R. Weertman, J. Phys. Chem. Solids 11, 315 (1959).

    Google Scholar 

  10. N. M. Salanskii and M. Sh. Erukhimov, Physical Properties and Applications of Magnetic Films (Nauka, Novosibirsk, 1975).

    Google Scholar 

  11. Yu. V. Gulyaev, P. E. Zil’berman, A. G. Temiryazev, and M. P. Tikhomirova, Radiotekh. Élektron. (Moscow) 44, 10 (1999).

    Google Scholar 

  12. A. G. Temiryazev, M. P. Tikhomirova, and P. E. Zilberman, J. Appl. Phys. 76, 5586 (1994).

    Article  ADS  Google Scholar 

  13. P. E. Zil’berman, A. G. Temiryazev, and M. P. Tikhomirova, Zh. Éksp. Teor. Fiz. 108(1), 281 (1995) [JETP 81, 151 (1995)].

    Google Scholar 

  14. Chen, C. E. Patton, G. Srinivasan, and Y. T. Zhang, IEEE Trans. Magn. 25, 3485 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 42, No. 6, 2000, pp. 1062–1067.

Original Russian Text Copyright © 2000 by Gulyaev, Zil’berman, Temiryazev, Tikhomirova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulyaev, Y.V., Zil’berman, P.E., Temiryazev, A.G. et al. Principal mode of the nonlinear spin-wave resonance in perpendicular magnetized ferrite films. Phys. Solid State 42, 1094–1099 (2000). https://doi.org/10.1134/1.1131354

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1131354

Keywords

Navigation