Skip to main content
Log in

Structural transitions in silicon induced by a femtosecond laser pulse: The role of an electron-hole plasma and phonon-phonon anharmonicity

  • Solids
  • Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is shown by the methods of time-resolved self-reflection and linear reflection that irradiation of a silicon target by a 100-fs laser pulse induces successive structural transitions of the target material to new crystal and liquid metal phases, which can occur during the laser pulse or 0.1–103 ps after the pulse termination, depending on the excitation conditions. The thresholds of these structural transitions are determined, and “’soft” phonon modes involved in them are identified, which represent “hot” short-wavelength LA modes. The dynamics of the structural transitions in silicon in the time interval from 0.1 to 103 ps is described using the model of instability of phonon modes caused by an electron-hole plasma and intra-and intermode phonon-phonon anharmonic interactions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. V. Shank, R. Yen, and C. Hirliman, Phys. Rev. Lett. 50, 454 (1983).

    Article  ADS  Google Scholar 

  2. C. V. Shank, R. Yen, and C. Hirliman, Phys. Rev. Lett. 51, 900 (1983).

    ADS  Google Scholar 

  3. V. Heine and J. A. van Vechten, Phys. Rev. B 13, 1622 (1976).

    Article  ADS  Google Scholar 

  4. R. Biswas and V. Ambegoakar, Phys. Rev. B 26, 1980 (1982).

    Article  ADS  Google Scholar 

  5. J. Bok, Phys. Lett. A 84, 448 (1981).

    Article  ADS  Google Scholar 

  6. M. Combescot and J. Bok, Phys. Rev. Lett. 48, 1413 (1982).

    Article  ADS  Google Scholar 

  7. S. A. Akhmanov, N. I. Koroteev, and I. L. Shumay, in Laser Science and Technology, Vol. 2: Nonlinear Optical Diagnostics of Laser-Excited Semiconductor Surfaces (Harwood Academic Publ., New York, 1989).

    Google Scholar 

  8. K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, Phys. Rev. B 51, 14186 (1995).

    Google Scholar 

  9. K. Sokolowski-Tinten and D. von der Linde, Phys. Rev. B 61, 2643 (2000).

    Article  ADS  Google Scholar 

  10. J. P. Callan, A. M.-T. Kim, L. Huang, et al., Chem. Phys. 251, 167 (2000).

    Article  Google Scholar 

  11. E. J. Yoffa, Phys. Rev. B 21, 2415 (1980).

    Article  ADS  Google Scholar 

  12. P. P. Pronko, P. A. VanRompay, C. Horvath, et al., Phys. Rev. B 58, 2387 (1998).

    Article  ADS  Google Scholar 

  13. D. H. Kim, H. Ehrenreich, and E. Runge, Solid State Commun. 89, 119 (1994).

    Google Scholar 

  14. G. C. Cho, W. Kütt, and H. Kurz, Phys. Rev. Lett. 65, 764 (1990).

    Article  ADS  Google Scholar 

  15. T. Pfeifer, W. Kütt, H. Kurz, et al., Phys. Rev. Lett. 69, 3248 (1992).

    Article  ADS  Google Scholar 

  16. H. J. Zeiger, J. Vidal, T. K. Cheng, et al., Phys. Rev. B 45, 768 (1992).

    Article  ADS  Google Scholar 

  17. S. Hunsche and H. Kurz, Appl. Phys. A A65, 221 (1997).

    ADS  Google Scholar 

  18. P. Stampfli and K. H. Bennemann, Phys. Rev. B 42, 7163 (1994).

    ADS  Google Scholar 

  19. V. I. Emel’yanov and D. V. Babak, Fiz. Tverd. Tela (St. Petersburg) 41, 1462 (1999) [Phys. Solid State 41, 1338 (1999)].

    Google Scholar 

  20. P. L. Silvestrelli, A. Alavi, M. Parrinello, et al., Phys. Rev. Lett. 77, 3149 (1996).

    Article  ADS  Google Scholar 

  21. J. S. Graves and R. E. Allen, Phys. Rev. B 58, 13627 (1998).

    Google Scholar 

  22. A. Gambirasio, M. Bernasconi, and L. Colombo, Phys. Rev. B 61, 8233 (2000).

    Article  ADS  Google Scholar 

  23. I. L. Shumay and U. Höfer, Phys. Rev. B 53, 15878 (1996).

  24. K. Sokolowski-Tinten, J. Solis, J. Bialkowski, et al., Phys. Rev. Lett. 81, 3679 (1998).

    ADS  Google Scholar 

  25. F. Spaepen and D. Turnbull, in Laser Processing of Semiconductors, Ed. by J. M. Poate and J. W. Mayer (Academic, New York, 1982), p. 15.

    Google Scholar 

  26. E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 10: Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981), Chap. 2.

    Google Scholar 

  27. E. N. Glezer, Y. Siegal, L. Huang, et al., Phys. Rev. B 51, 6959 (1995).

    ADS  Google Scholar 

  28. S. V. Govorkov, V. I. Emel’yanov, and I. L. Shumay, Laser Phys. 2, 77 (1992).

    Google Scholar 

  29. E. N. Glezer, Y. Siegal, L. Huang, et al., Phys. Rev. B 51, 9589 (1995).

    ADS  Google Scholar 

  30. Femtosecond Laser Pulses: Principles and Experiments, Ed. by C. Rulliere (Springer-Verlag, Berlin, 1998).

    Google Scholar 

  31. P. G. Kryukov, Kvantovaya Élektron. (Moscow) 31, 95 (2001).

    Google Scholar 

  32. K. Sokolowski-Tinten, J. Bialkowski, M. Boing, et al., Phys. Rev. B 58, 11805 (1998).

    Google Scholar 

  33. S. I. Kudryashov and V. I. Emel’yanov, Pis’ma Zh. Éksp. Teor. Fiz. 73, 263 (2001) [JETP Lett. 73, 228 (2001)].

    Google Scholar 

  34. D. H. Reitze, T. R. Zhang, Wm. M. Wood, et al., J. Opt. Soc. Am. B 7, 84 (1990).

    ADS  Google Scholar 

  35. Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, Orlando, 1985).

    Google Scholar 

  36. C. Guo, G. Rodriguez, A. Lobad, et al., Phys. Rev. Lett. 84, 4493 (2000).

    ADS  Google Scholar 

  37. C. Guo and A. J. Taylor, Phys. Rev. B 62, 5382 (2000).

    ADS  Google Scholar 

  38. E. Yu. Tonkov, High Pressure Phase Transformations: a Handbook (Metallurgiya, Moscow, 1988; Gordon and Breach, Philadelphia, 1992).

    Google Scholar 

  39. Yu. V. Kopaev, V. V. Menyailenko, and S. N. Molotkov, Fiz. Tverd. Tela (Leningrad) 27, 3288 (1985) [Sov. Phys. Solid State 27, 1979 (1985)].

    Google Scholar 

  40. K. M. Shvarev, B. A. Baum, and N. V. Gel’d, Fiz. Tverd. Tela (Leningrad) 16, 3246 (1974) [Sov. Phys. Solid State 16, 2111 (1974)].

    Google Scholar 

  41. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series (Springer-Verlag, Berlin, 1982), Group III, Vol. 17a.

  42. J. M. Liu, R. Yen, H. Kurz, et al., Appl. Phys. Lett. 39, 755 (1981).

    Article  ADS  Google Scholar 

  43. R. Orbach, IEEE Trans. Sonics Ultrason. SU-14, 140 (1967).

  44. O. V. Misochko, Zh. Éksp. Teor. Fiz. 119, 285 (2001) [JETP 92, 246 (2001)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 121, No. 1, 2002, pp. 113–128.

Original Russian Text Copyright © 2002 by Kudryashov, Emel’yanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudryashov, S.I., Emel’yanov, V.I. Structural transitions in silicon induced by a femtosecond laser pulse: The role of an electron-hole plasma and phonon-phonon anharmonicity. J. Exp. Theor. Phys. 94, 94–107 (2002). https://doi.org/10.1134/1.1448612

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1448612

Keywords

Navigation