Skip to main content
Log in

Structural mechanisms of plastic deformation in nanocrystalline materials

  • Defects, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A model of the initial stage of plastic deformation in nanomaterials is proposed. Within this model, the plastic deformation occurs through grain boundary microsliding (GBM). The accommodation processes accompanying the formation of GBM regions are considered. The relationships describing the regularities in the deformation behavior of nanomaterials and the dependence of the flow stress on the grain size are derived, and the temperature dependence of the GBM resistance stress is calculated. It is demonstrated that the results obtained are in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Prog. Mater. Sci. 33(4), 223 (1989).

    Article  ADS  Google Scholar 

  2. R. A. Andrievskii and A. M. Glezer, Fiz. Met. Metallogr. 88(1), 50 (2000).

    Google Scholar 

  3. R. A. Andrievskii and A. M. Glezer, Fiz. Met. Metallogr. 89(1), 91 (2000).

    Google Scholar 

  4. V. G. Gryaznov and L. I. Trusov, Prog. Mater. Sci. 37(4), 289 (1993).

    Article  Google Scholar 

  5. R. W. Siegel, J. Phys. Chem. Solids 55(10), 1097 (1994).

    Google Scholar 

  6. K. Lu, Mater. Sci. Eng., R 16, 161 (1996).

    Article  Google Scholar 

  7. R. Z. Valiev and R. K. Islamgaliev, Fiz. Met. Metallogr. 85(3), 161 (1998).

    Google Scholar 

  8. A. N. Orlov, V. N. Perevezentsev, and V. V. Rybin, Grain Boundaries in Metals (Metallurgiya, Moscow, 1980).

    Google Scholar 

  9. V. V. Shpeizman, V. I. Nikolaev, B. I. Smirnov, et al., Fiz. Tverd. Tela (St. Petersburg) 40(7), 1264 (1998) [Phys. Solid State 40, 1151 (1998)].

    Google Scholar 

  10. V. V. Shpeizman, V. I. Nikolaev, B. I. Smirnov, et al., Fiz. Tverd. Tela (St. Petersburg) 40(9), 1639 (1998) [Phys. Solid State 40, 1489 (1998)].

    Google Scholar 

  11. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 37(8), 2281 (1995) [Phys. Solid State 37, 1248 (1995)].

    Google Scholar 

  12. C. S. Pande, R. A. Masumura, and R. W. Armstrong, Nanostruct. Mater. 2(3), 323 (1993).

    Google Scholar 

  13. A. A. Nazarov, A. E. Romanov, and R. Z. Valiev, Nanostruct. Mater. 6(5–8), 775 (1995).

    Google Scholar 

  14. S. G. Zaichenko and A. M. Glezer, Fiz. Tverd. Tela (St. Petersburg) 39(11), 2023 (1997) [Phys. Solid State 39, 1810 (1997)].

    Google Scholar 

  15. D. A. Konstantinidis and E. C. Aifantis, Nanostruct. Mater. 10, 1111 (1998).

    Google Scholar 

  16. P. Keblinski, S. R. Phillpot, D. Wolf, and Y. Gleiter, Nanostruct. Mater. 9, 651 (1997).

    Google Scholar 

  17. J. Schiotz, F. D. Di Tolla, and K. W. Jacobsen, Nature 391(6667), 561 (1998).

    Google Scholar 

  18. V. A. Pozdnyakov and A. M. Glezer, Pis’ma Zh. Tekh. Fiz. 21(1), 31 (1995) [Tech. Phys. Lett. 21, 13 (1995)].

    Google Scholar 

  19. H. Hahn and K. A. Rabmanabhan, Philos. Mag. B 76(4), 553 (1997).

    Google Scholar 

  20. A. S. Argon, Acta Metall. 27(1), 47 (1979).

    ADS  Google Scholar 

  21. T. Mura, Micromechanics of Defects in Solids (Martinus Nijhoff, The Hague, 1982).

    Google Scholar 

  22. R. L. Salganik, Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela 4, 149 (1973).

    Google Scholar 

  23. V. G. Gryaznov, I. A. Polonsky, and A. E. Romanov, Phys. Rev. B 44(1), 42 (1991).

    Article  ADS  Google Scholar 

  24. V. N. Perevezentsev and V. V. Rybin, Fiz. Met. Metalloved. 51(3), 649 (1981).

    Google Scholar 

  25. M. F. Ashby, Philos. Mag. 21, 170 (1970); 21, 399 (1970).

    Google Scholar 

  26. G. W. Nieman, J. R. Weertman, and R. W. Siegel, J. Mater. Res. 6(5), 1012 (1991).

    ADS  Google Scholar 

  27. A. P. Sutton and V. Vitek, Philos. Trans. R. Soc. London, Ser. A 309, 1 (1983).

    ADS  Google Scholar 

  28. U. F. Kocks, A. S. Argon, and M. F. Ashby, Prog. Mater. Sci. 19(1), 1 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 44, No. 4, 2002, pp. 705–710.

Original Russian Text Copyright © 2002 by Pozdnyakov, Glezer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozdnyakov, V.A., Glezer, A.M. Structural mechanisms of plastic deformation in nanocrystalline materials. Phys. Solid State 44, 732–737 (2002). https://doi.org/10.1134/1.1470567

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1470567

Keywords

Navigation