Skip to main content
Log in

Mechanisms of optical limiting in fullerene-doped π-conjugated organic structures demonstrated with polyimide and COANP molecules

  • Molecular Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Possible mechanisms of optical limiting of visible radiation in conjugated organic structures based on polyimides and substituted pyridines sensitized with C60 and/or C70 fullerenes are studied using the Z-scan method. It is shown that reverse saturable absorption, two-photon absorption, and complex formation between the donor fragment of a π-conjugated molecule and fullerene contribute to the processes of nonlinear absorption. The absorption cross sections for excited states of the charge transfer complexes based on polyimide 6B-C70 and 2-cyclooctylamino-5-nitropyridine-C70 systems are calculated. The data obtained are quantitatively interpreted and compared with those provided by alternative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, et al., Nature 318, 162 (1985).

    Article  ADS  Google Scholar 

  2. W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature 347, 354 (1990).

    Article  ADS  Google Scholar 

  3. The Fullerenes, Ed. by H. W. Kroto, J. E. Fischer, and D. E. Cox (Pergamon, New York, 1993).

  4. S. Couris, E. Koudoumas, A. A. Ruth, and S. Leach, J. Phys. B 8, 4537 (1995).

    Article  ADS  Google Scholar 

  5. V. P. Belousov, I. M. Belousova, V. P. Budtov, et al., Opt. Zh. 64(12), 3(1997) [J. Opt. Technol. 64, 1081 (1997)].

    Google Scholar 

  6. Y. Wang, N. Herron, and J. Casper, Mater. Sci. Eng. B 19, 61 (1993).

    Article  Google Scholar 

  7. A. Itaya, I. Sizzuki, Y. Tsuboi, and H. Miyasaaka, J. Phys. Chem. B 101, 5118 (1997).

    Article  Google Scholar 

  8. D. V. Konarev, Yu. M. Shul’ga, O. S. Roshchupkina, and R. N. Lyubovskaya, J. Phys. Chem. Solids 58, 1869 (1997).

    Article  ADS  Google Scholar 

  9. D. V. Konarev, Y. V. Zubavichus, Yu. L. Slovokhotov, et al., Synth. Met. 92, 1 (1998).

    Article  Google Scholar 

  10. K. Hosoda, R. Tada, M. Ishikawa, and K. Yoshino, Jpn. J. Appl. Phys., Part 2 36, L372 (1997).

    Article  Google Scholar 

  11. K. Yoshino, X. H. Yin, S. Morita, and A. A. Zakhidov, Jpn. J. Appl. Phys., Part 2 32, L140 (1993).

    Article  Google Scholar 

  12. Y. A. Cherkasov, N. V. Kamanina, E. L. Alexandrova, et al., Proc. SPIE 3471, 254 (1998).

    Article  ADS  Google Scholar 

  13. US Patent No. 3554744 (1971).

  14. P. I. Dubenskov, T. S. Zhuravleva, A. V. Vannikov, et al., Vysokomol. Soedin., Ser. A 30, 1211 (1988).

    Google Scholar 

  15. B. M. Rumyantsev, V. I. Berendyaev, N. A. Vasilenko, et al., J. Polym. Sci., Part A: Polym. Chem. 39, 506 (1997).

    Google Scholar 

  16. V. S. Mylnikov, Adv. Polym. Sci. 115, 3 (1991).

    Google Scholar 

  17. N. V. Kamanina, L. N. Soms, and A. A. Tarasov, Opt. Spektrosk. 68, 691 (1990) [Opt. Spectrosc. 68, 403 (1990)].

    Google Scholar 

  18. N. V. Kamanina and N. A. Vasilenko, Opt. Quantum Electron. 29, 1 (1997).

    Article  Google Scholar 

  19. N. V. Kamanina, Opt. Spektrosk. 90, 960 (2001) [Opt. Spectrosc. 90, 867 (2001)].

    Google Scholar 

  20. N. V. Kamanina, L. N. Kaporskii, and B. V. Kotov, Opt. Commun. 152, 280 (1998).

    Article  ADS  Google Scholar 

  21. N. V. Kamanina, Opt. Commun. 162, 228 (1999).

    Article  ADS  Google Scholar 

  22. N. V. Kamanina, I. V. Bagrov, I. M. Belousova, et al., Opt. Commun. 194, 367 (2001).

    Article  ADS  Google Scholar 

  23. N. Kamanina, A. Barrientos, A. Leyderman, et al., Mol. Mater. 13, 275 (2000).

    Google Scholar 

  24. N. V. Kamanina, J. Opt. A 3, 321 (2001).

    ADS  Google Scholar 

  25. N. V. Kamanina, L. N. Kaporskii, V. N. Sizov, and D. I. Staselko, Opt. Commun. 185, 363 (2000).

    Article  ADS  Google Scholar 

  26. R. S. Ruoff, D. S. Tse, R. Malhotra, and D. C. Lorents, J. Phys. Chem. 97, 3379 1993).

    Article  Google Scholar 

  27. M. Sheik-Bahae, A. A. Said, T. H. Wei, et al., IEEE J. Quantum Electron. 26, 760 1990).

    Article  ADS  Google Scholar 

  28. K. Dou, J. Y. Du, and E. T. Knobbe, J. Lumin. 83–84, 241 (1999).

    Article  Google Scholar 

  29. A. Adinolfi, T. Cassano, R. Tommasi, and M. Ferrara, Nonlinear Opt. 21, 327 (1999).

    Google Scholar 

  30. R. V. Markov, A. I. Plekhanov, S. G. Rautian, et al., Opt. Spektrosk. 85, 643 (1998) [Opt. Spectrosc. 85, 588 (1998)].

    Google Scholar 

  31. R. V. Bensasson, T. Hill, C. Lambert, et al., Chem. Phys. Lett. 206, 197 (1993).

    Article  ADS  Google Scholar 

  32. N. V. Kamanina, L. N. Kaporskii, A. O. Pozdnyakov, and B. V. Kotov, Proc. SPIE 3939, 228 (2000).

    Article  ADS  Google Scholar 

  33. B. S. Razbirin, in Cycle of Workshops by Professor A. Ya. Vul’ “Fullerenes and Atomic Clusters, ” Ioffe Physicotechnical Institute, Russian Academy of Sciences, St. Petersburg, 2002, Report.

  34. A. V. Vannikov and A. D. Grishina, in Photochemistry of Polymeric Donor-Acceptor Complexes (Nauka, Moscow, 1984).

    Google Scholar 

  35. N. V. Kamanina, V. S. Vikhnin, A. Leyderman, et al., Opt. Spektrosk. 89, 404 (2000) [Opt. Spectrosc. 89, 369 (2000)].

    Google Scholar 

  36. A. V. Eletskii and B. S. Smirnov, Usp. Fiz. Nauk 161(7), 173 (1991) [Sov. Phys. Usp. 34, 616 (1991)].

    Google Scholar 

  37. L. V. Gurvich, G. V. Karachevtsev, V. N. Kondrat’ev, Yu. A. Lebedev, V. K. Medvedev, V. K. Potapov, and Yu. S. Khodeev, Bond-Breaking Energies, Ionization Potentials and Electron Affinity (Nauka, Moscow, 1974).

    Google Scholar 

  38. N. V. Kamanina, Opt. Spektrosk. 90, 1027 (2001) [Opt. Spectrosc. 90, 931 (2001)].

    Google Scholar 

  39. M. I. Bessonov, N. P. Kuznetsov, and M. M. Koton, Vysokomol. Soedin., Ser. A 20, 347 (1978).

    Google Scholar 

  40. S. V. Vinogradova, G. L. Slonimskii, Ya. S. Vygodskii, et al., Vysokomol. Soedin., Ser. A 11, 2725 (1969).

    Google Scholar 

  41. D. G. McLean, R. L. Sutherland, M. C. Brant, et al., Opt. Lett. 18, 858 (1993).

    Article  ADS  Google Scholar 

  42. I. M. Belousova, V. A. Grigor’ev, O. B. Danilov, et al., Opt. Spektrosk. 90, 341 (2001) [Opt. Spectrosc. 90, 292 (2001)].

    Google Scholar 

  43. D. K. Palit, A. V. Sapre, J. P. Mittal, and V. N. R. Rao, Chem. Phys. Lett. 195, 1 (1992).

    Article  ADS  Google Scholar 

  44. F. Gutmann and L. E. Lyons, Organic Semiconductors (Wiley, New York, 1967; Mir, Moscow, 1970).

    Google Scholar 

  45. Gang Gu, Wencheng Zhang, Hao Zen, et al., J. Phys. B 26, L451 (1993).

    Article  ADS  Google Scholar 

  46. E. L. Aleksandrova, N. V. Kamanina, Yu. A. Cherkasov, et al., Opt. Zh. 65(8), 87 (1998) [J. Opt. Technol. 65, 676 (1998)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Optika i Spektroskopiya, Vol. 93, No. 3, 2002, pp. 443–452.

Original Russian Text Copyright © 2002 by Kamanina, Plekhanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamanina, N.V., Plekhanov, A.I. Mechanisms of optical limiting in fullerene-doped π-conjugated organic structures demonstrated with polyimide and COANP molecules. Opt. Spectrosc. 93, 408–415 (2002). https://doi.org/10.1134/1.1509823

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1509823

Keywords

Navigation