Skip to main content
Log in

The influence of oxygen vacancies on the magnetic state of La0.50D0.50MnO3−γ (D=Da, Sr) manganites

  • Solids
  • Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The crystal structure and magnetic and electric transport properties of polycrystalline La0.50D0.50MnO3−γmanganites (D=Ca, Sr) were studied experimentally depending on the concentration of oxygen vacancies. The La0.50Sr0.50MnO3−γ system of anion-deficient compositions was found to be stable and possess a perovskite structure only up to the γ=0.25 concentration of oxygen vacancies, whereas, for the La0.50Ca0.50MnO3−γ system, we were able to obtain samples with the concentrations of oxygen vacancies up to γ=0.50. The stoichiometric La0.50D0.50MnO3 (D=Ca, Sr) compositions had O-orthorhombic (Ca) and tetragonal (Sr) unit cells. The unit cell of the anion-deficient La0.50Sr0.50MnO3−γ manganites also became O-orthorhombic when the concentration of oxygen vacancies increased γτ;0.16). Oxygen deficiency in La0.50Sr0.50MnO3−γ first caused the transition from the antiferromagnetic to the ferromagnetic state γ∼0.06) and then to the spin glass state γ∼0.16). Supposedly, the oxygen vacancies in the reduced La0.50Sr0.50MnO3− γ samples with γ≥0.16 were disordered. The special feature of the La0.50Ca0.50MnO3−γ manganites was a nonuniform distribution of oxygen vacancies in the La0.50Ca0.50MnO2.75 phase. In the La0.50Ca0.50MnO2.50 phase, the type of oxygen vacancy ordering corresponded to that in Sr2Fe2O5, which led to antiferromagnetic ordering. The specific electric resistance of the La0.50D0.50MnO3−γ anion-deficient samples increased with increasing oxygen deficiency. The magnetoresistance of all samples gradually increased as a result of the transition to the magnetically ordered state. Supposedly, the La0.50Ca0.50MnO3−γ manganites in the range of oxygen vacancy concentrations 0.09≤γ≤0.50 had a mixed state and contained microdomains with different types of magnetic ordering. The experimentally observed properties can be interpreted based on the model of phase layering and the model of superexchange magnetic ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Kusters, D. A. Singleton, D. A. Keen, et al., Physica B (Amsterdam) 155, 362 (1989).

    ADS  Google Scholar 

  2. Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater. 200, 1 (1999).

    Article  ADS  Google Scholar 

  3. E. Dagotto, T. Hotta, A. Moreo, et al., Phys. Rep. 344, 1 (2001).

    Article  ADS  Google Scholar 

  4. E. E. Havinga, Philips Res. Rep. 21, 432 (1966).

    Google Scholar 

  5. G. Matsumoto, J. Phys. Soc. Jpn. 29, 606 (1970).

    Google Scholar 

  6. K. Kubo, J. Phys. Soc. Jpn. 33, 21 (1972).

    Google Scholar 

  7. E. L. Nagaev, Phys. Rep. 346, 387 (2001).

    Article  ADS  Google Scholar 

  8. P. Schiffer, A. P. Ramírez, W. Bao, et al., Phys. Rev. Lett. 75, 3336 (1995).

    Article  ADS  Google Scholar 

  9. A. Urushibara, Y. Moritomo, T. Arima, et al., Phys. Rev. B 51, 14103 (1995).

  10. V. M. Loktev and Yu. G. Pogorelov, Fiz. Nizk. Temp. 26, 231 (2000) [Low Temp. Phys. 26, 171 (2000)].

    Google Scholar 

  11. I. Dzialoshinsky, J. Phys. Chem. Solids 4, 241 (1958).

    Google Scholar 

  12. G. H. Jonker and J. H. Van Santen, Physica (Utrecht) 16, 337 (1950).

    Article  Google Scholar 

  13. J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999).

    Article  ADS  Google Scholar 

  14. S. Jin, T. H. Tiefel, M. McCormack, et al., Science 264, 413 (1994).

    ADS  Google Scholar 

  15. J. W. Lynn, R. W. Erwin, J. A. Borchers, et al., Phys. Rev. Lett. 76, 4046 (1996).

    Article  ADS  Google Scholar 

  16. Y. Tomioka, A. Asamitsu, Y. Moritomo, and Y. Tokura, Phys. Rev. Lett. 74, 5108 (1995).

    Article  ADS  Google Scholar 

  17. Y. Moritomo, A. Machida, S. Mori, et al., Phys. Rev. B 60, 9220 (1999).

    ADS  Google Scholar 

  18. F. Rivadulla, M. Freita-Alvite, M. A. López-Quintela, et al., J. Appl. Phys. 91, 785 (2002).

    ADS  Google Scholar 

  19. P. Levy, F. Parisi, G. Polla, et al., Phys. Rev. B 62, 6437 (2000).

    Article  ADS  Google Scholar 

  20. C. H. Chen and S.-W. Cheong, Phys. Rev. Lett. 76, 4042 (1996).

    ADS  Google Scholar 

  21. H. Watanabe, J. Phys. Soc. Jpn. 16, 433 (1961).

    Google Scholar 

  22. S. I. Patil, S. M. Bhagat, Q. Q. Shu, et al., Phys. Rev. B 62, 9548 (2000).

    Article  ADS  Google Scholar 

  23. C. Zener, Phys. Rev. 82, 403 (1951).

    Article  ADS  Google Scholar 

  24. P.-G. De Gennes, Phys. Rev. 118, 141 (1960).

    ADS  Google Scholar 

  25. J. B. Goodenough, A. Wold, R. J. Arnott, and N. Menyuk, Phys. Rev. 124, 373 (1961).

    Article  ADS  Google Scholar 

  26. I. O. Troyanchuk, S. V. Trukhanov, D. D. Khalyavin, et al., Fiz. Tverd. Tela (St. Petersburg) 42, 297 (2000) [Phys. Solid State 42, 305 (2000)].

    Google Scholar 

  27. I. O. Troyanchuk, S. V. Trukhanov, H. Szymczak, et al., Zh. Éksp. Teor. Fiz. 120, 183 (2001) [JETP 93, 161 (2001)].

    Google Scholar 

  28. S. V. Trukhanov, I. O. Troyanchuk, H. Szymczak, and K. Barner, Phys. Status Solidi B 229, 1417 (2002).

    Google Scholar 

  29. S. V. Trukhanov, N. V. Kasper, I. O. Troyanchuk, et al., J. Solid State Chem. 169, 85 (2002).

    Article  ADS  Google Scholar 

  30. S. V. Trukhanov, I. O. Troyanchuk, I. M. Fita, et al., J. Magn. Magn. Mat. 237, 276 (2001).

    Article  ADS  Google Scholar 

  31. S. V. Trukhanov, I. O. Troyanchuk, M. Hervieu, et al., Phys. Rev. B 66, 184424 (2002).

    Google Scholar 

  32. J. M. González-Calbet, M. Vallet-Regi, M. A. Alario-Franko, et al., Mater. Res. Bull. 18, 285 (1983).

    Google Scholar 

  33. J. B. Wiley, M. Sabat, S. J. Hwu, et al., J. Solid State Chem. 87, 250 (1990).

    ADS  Google Scholar 

  34. S. V. Trukhanov, I. O. Troyanchuk, N. V. Pushkarev, and G. Szymczak, Zh. Éksp. Teor. Fiz. 122, 356 (2002) [JETP 95, 308 (2002)].

    Google Scholar 

  35. S. V. Trukhanov, N. V. Kasper, I. O. Troyanchuk, et al., Phys. Status Solidi B 233, 321 (2002).

    Google Scholar 

  36. J. M. González-Calbet, E. Herrero, N. Rangavittal, et al., J. Solid State Chem. 148, 158 (1999).

    ADS  Google Scholar 

  37. J. Alonso, E. Herrero, J. M. González-Calbet, et al., Phys. Rev. B 62, 11328 (2000).

    Google Scholar 

  38. J. Alonso, A. Arroyo, J. M. González-Calbet, et al., Phys. Rev. B 64, 172410 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 123, No. 6, 2003, pp. 1200–1211.

Original Russian Text Copyright © 2003 by Troyanchuk, Trukhanov, Shapovalova, Khomchenko, Tovar, Szymczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Troyanchuk, I.O., Trukhanov, S.V., Shapovalova, E.F. et al. The influence of oxygen vacancies on the magnetic state of La0.50D0.50MnO3−γ (D=Da, Sr) manganites. J. Exp. Theor. Phys. 96, 1055–1064 (2003). https://doi.org/10.1134/1.1591217

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1591217

Keywords

Navigation