Skip to main content
Log in

Mathematical modeling of random coupling between polarization modes in single-mode optical fibers: XI. Dependence of the zero drift of fiber ring interferometers on the interval of temperature variation of the fiber

  • Physical and Quantum Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The dependence of the value of the zero drift of a fiber ring interferometer (FRI), which is caused by a change in polarization nonreciprocity as a consequence of a change in the random coupling of polarization modes at inhomogeneities of the FRI loop, on the value of the interval of possible temperature variation of the single-mode optical fiber (SMF) of the FRI loop is considered. It is shown that the value of the zero drift of an FRI with a nonmonochromatic radiation source—a superluminescent diode—in a rather broad interval of temperature variations (about 100 K) is proportional to the value of the interval itself and inversely proportional to the linewidth of the radiation source. Numerical estimations are made, and they show that, for practical values of the interval of temperature variation in a room, the value of the zero drift may be much smaller than the values calculated according to the method of averaging over independent realizations of random inhomogeneities in the SMF of an FRI loop. When temperature stabilization is used, the value of the zero drift of an FRI can be additionally reduced by one to two orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. B. Malykin and V. I. Pozdnyakova, Opt. Spektrosk. 96, 274 (2004) [Opt. Spectrosc. 96, 240 (2004)].

    Article  Google Scholar 

  2. R. Ulrich, Opt. Lett. 5, 173 (1980).

    Article  ADS  Google Scholar 

  3. G. B. Malykin, V. I. Pozdnyakova, and I. A. Shereshevskii, Opt. Spektrosk. 83, 843 (1997) [Opt. Spectrosc. 83, 780 (1997)].

    Google Scholar 

  4. A. A. Belyanin, V. V. Kocharovsky, and Vl. V. Kocharovsky, Quantum Semiclassic. Opt. 10(2), L13 (1998).

    Article  ADS  Google Scholar 

  5. D. S. Mamedov, V. V. Prokhorov, and S. D. Yakubovich, Kvantovaya Élektron. (Moscow) 33, 471 (2003).

    Article  Google Scholar 

  6. W. K. Burns and R. P. Moeller, J. Lightwave Technol. 2, 430 (1984).

    ADS  Google Scholar 

  7. S. M. Kozel, V. N. Listvin, S. V. Shatalin, and R. V. Yushkaitis, Opt. Spektrosk. 61, 1295 (1986) [Opt. Spectrosc. 61, 814 (1986)].

    Google Scholar 

  8. G. B. Malykin, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 34, 817 (1991).

    Google Scholar 

  9. G. B. Malykin and V. I. Pozdnyakova, Opt. Spektrosk. 84, 145 (1998) [Opt. Spectrosc. 84, 131 (1998)].

    Google Scholar 

  10. G. B. Malykin and V. I. Pozdnyakova, Opt. Spektrosk. 94, 333 (2003) [Opt. Spectrosc. 94, 300 (2003)].

    Article  Google Scholar 

  11. G. B. Malykin and V. I. Pozdnyakova, Opt. Spektrosk. 95, 646 (2003) [Opt. Spectrosc. 95, 603 (2003)].

    Article  Google Scholar 

  12. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

    Google Scholar 

  13. I. P. Kaminov, IEEE J. Quantum Electron. 17, 15 (1981).

    Article  ADS  Google Scholar 

  14. S. C. Rashleigh, J. Lightwave Technol. 1, 312 (1983).

    ADS  Google Scholar 

  15. K. Böhm, K. Petermann, and E. Weidel, J. Lightwave Technol. 1, 71 (1983).

    Article  ADS  Google Scholar 

  16. A. N. Zalogin, S. M. Kozel, and V. N. Listvin, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 29, 243 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Optika i Spektroskopiya, Vol. 97, No. 6, 2004, pp. 1008–1013.

Original Russian Text Copyright © 2004 by Malykin, Pozdnyakova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malykin, G.B., Pozdnyakova, V.I. Mathematical modeling of random coupling between polarization modes in single-mode optical fibers: XI. Dependence of the zero drift of fiber ring interferometers on the interval of temperature variation of the fiber. Opt. Spectrosc. 97, 945–950 (2004). https://doi.org/10.1134/1.1843956

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1843956

Keywords

Navigation