Skip to main content
Log in

Mechanochemical synthesis of nonstoichiometric fluorite Ca1−x LaxF2+x nanocrystals from CaF2 and LaF3 single crystals

  • Nanomaterials
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The nonstoichiometric Ca1−x LaxF2+x phase (x ≥ 0.1) is obtained by mechanochemical synthesis from CaF2 and LaF3 single crystals. This phase is the first representative of fluorite fluorides obtained by mechanochemical synthesis in the MFm-RFn systems (m < n ≤ 4). The average grain size ranges within 10–30 nm. The temperature dependence of ionic conductivity of the mechanochemically synthesized phase pressurized at 600 MPa (at its high-temperature portion at temperatures exceeding 200–250°C) coincides with the conductivity of the single crystals of the same composition (Ca0.8La0.2F2.2). The activation energy of ionic conductivity (0.95 eV) corresponds to migration of interstitial fluoride ions in the crystal bulk. Mechanochemical synthesis of a multicomponent fluoride material with nanometer grains opens a new chapter in the chemistry of inorganic fluorides. A decrease of the sintering temperature of the powders with nanometer grains is very important for preparing dense fluoride ceramics of complicated compositions and other polycrystalline forms of fluoride materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Sobolev, Zh. Vses. Khim. O-va im. D. I. Mendeleeva 36(6), 726 (1991).

    Google Scholar 

  2. B. P. Sobolev, Butll. Soc. Catalana Cien. Fis. Quim. Mat. 12(2), 275 (1991).

    Google Scholar 

  3. B. P. Sobolev, in Crystal Growth (Nauka, Moscow, 1990), Vol. 18, p. 233 [in Russian].

    Google Scholar 

  4. B. P. Sobolev, in Crystals. Growth, Structure, Properties (Nauka, Moscow, 1993), Vol. 18, p. 167 [in Russian].

    Google Scholar 

  5. B. P. Sobolev, The Rare Earth Trifluorides, Part 2: Introduction to Materials Science of Multicomponent Metal Fluoride Crystals (Inst. d’Estudis Catalans, Barcelona, 2001).

    Google Scholar 

  6. V. M. Goldschmidt, T. Barth, G. Lunde, and W. Zachariasen, Skr. Nor. Vidensk. Akad. 1: Mat.-Naturvidensk. Kl. 1(2), 1 (1926).

    Google Scholar 

  7. A. K. Ivanov-Shits, N. I. Sorokin, P. P. Fedorov, and B. P. Sobolev, Solid State Ionics 37(1–2), 125 (1990).

    Google Scholar 

  8. A. K. Ivanov-Shitz, N. I. Sorokin, P. P. Fedorov, and B. P. Sobolev, Solid State Ionics 31(4), 269 (1989).

    Google Scholar 

  9. B. P. Sobolev, A. M. Golubev, and P. Herrero, Kristallografiya 48(1), 148 (2003) [Crystallogr. Rep. 48, 141 (2003)].

    Google Scholar 

  10. B. P. Sobolev, Z. I. Zhmurova, V. V. Karelin, et al., in Crystal Growth (Nauka, Moscow, 1988), Vol. 16, p. 58 [in Russian].

    Google Scholar 

  11. E. G. Chernevskaya, G. V. Anan’eva, T. I. Merkulyaeva, et al., Izv. Akad. Nauk SSSR, Neorg. Mater. 26(3), 658 (1990).

    Google Scholar 

  12. B. P. Sobolev, Crystallogr. Rep. 47(Suppl. 1), 563 (2002).

    Google Scholar 

  13. P. P. Fedorov, Yu. G. Sizganov, and B. P. Sobolev, in Abstracts of IV All-Union Symposium on Chemistry of Inorganic Fluorides, Dushanbe, 1975 (Nauka, Moscow, 1975), p. 30.

    Google Scholar 

  14. B. P. Sobolev and P. P. Fedorov, J. Less-Common Met. 60(1), 33 (1978).

    Article  Google Scholar 

  15. P. P. Fedorov and B. P. Sobolev, J. Less-Common Met. 63(1), 31 (1979).

    Article  Google Scholar 

  16. M. Svantner, E. Mariani, P. P. Fedorov, and B. P. Sobolev, Krist. Tech. 14(3), 365 (1979).

    Google Scholar 

  17. G. G. Glavin and Yu. A. Karpov, Zavod. Lab. 30(3), 306 (1964).

    Google Scholar 

  18. E. V. Shelekhov and T. A. Sviridova, Materialovedenie, No. 10, 13 (1999).

  19. S. N. Sulyanov, A. N. Popov, and D. M. Kheiker, J. Appl. Crystallogr. 27, 934 (1994).

    Article  Google Scholar 

  20. J. Rodriguez-Carvajal, Program FullProf (Lab. Leon Brillouin, France, 2004).

    Google Scholar 

  21. O. Greis and M. Kieser, Z. Anorg. Allg. Chem. 479, 165 (1981).

    Article  Google Scholar 

  22. P. P. Fedorov and B. P. Sobolev, Kristallografiya 37(5), 1210 (1992) [Sov. Phys. Crystallogr. 37, 651 (1992)].

    Google Scholar 

  23. V. V. Zyryanov and N. F. Uvarov, Neorg. Mater. 40(7), 835 (2004).

    Google Scholar 

  24. V. V. Zyryanov, Neorg. Mater. 39(11), 1347 (2003).

    Google Scholar 

  25. N. I. Sorokin, M. V. Fominykh, E. A. Krivandina, et al., Fiz. Tverd. Tela (St. Petersburg) 41(4), 638 (1999) [Phys. Solid State 41, 573 (1999)].

    Google Scholar 

  26. N. I. Sorokin, M. V. Fominykh, E. A. Krivandina, et al., Kristallografiya 41(2), 310 (1996) [Crystallogr. Rep. 41, 292 (1996)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kristallografiya, Vol. 50, No. 3, 2005, pp. 524–531.

Original Russian Text Copyright © 2005 by Sobolev, Sviridov, Fadeeva, Sul’yanov, Sorokin, Zhmurova, Herrero, Landa-Canovas, Rojas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobolev, B.P., Sviridov, I.A., Fadeeva, V.I. et al. Mechanochemical synthesis of nonstoichiometric fluorite Ca1−x LaxF2+x nanocrystals from CaF2 and LaF3 single crystals. Crystallogr. Rep. 50, 478–485 (2005). https://doi.org/10.1134/1.1927613

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1927613

Keywords

Navigation