Skip to main content
Log in

Molecular-dynamics simulation of evaporation of a liquid

  • Fluids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The molecular-dynamics method is used to investigate high-temperature evaporation of a simple liquid. The interaction of the atoms is described by a Lenard-Jones 6–12 potential. The simulation shows that fluctuations of the binding energy in the surface layer play an important role in evaporation, thanks to which a significant contribution to the evaporated flux comes from atoms whose kinetic energy is of the same order of magnitude as the mean thermal energy. Such a mechanism of evaporation differs substantially from the traditional one [Ya. I. Frenkel’, Kinetic Theory of Liquids (Clarendon Press, Oxford, 1946)] based on the assumption that only those particles evaporate that have energies of the order of the binding energy, i.e., much larger than the mean thermal energy. The structure of the transitional layer between the bulk gas and liquid phases is investigated. Potential energy fluctuations and pairwise correlation functions in the bulk phases and transitional layer are calculated. The velocity distribution function of the atoms for evaporation into vacuum is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. I. Frenkel’, Kinetic Theory of Liquids (Clarendon Press, Oxford, 1946).

    Google Scholar 

  2. O. Knake and I. N. Stranskii, Usp. Fiz. Nauk 68, 261(1959) [Sov. Phys. Usp. 2, (1959).

    Google Scholar 

  3. J. P. Hirth and G.M. Pound, Condensation and Evaporation: Nucleation and Growth Kinetics (Pergamon Press, Oxford, 1963).

    Google Scholar 

  4. S. I. Anisimov, Zh. Éksp. Teor. Fiz. 54, 338 (1968) [Sov. Phys. JETP 27, (1968)].

    Google Scholar 

  5. M. N. Kogan, Ann. Rev. Fluid Mech. 5, 383 (1973).

    Article  ADS  MATH  Google Scholar 

  6. S. I. Anisimov and A. Kh. Rakhmatulina, Zh. Éksp. Teor. Fiz. 64, 869 (1973) [Sov. Phys. JETP 37, 441 (1973)].

    Google Scholar 

  7. V. I. Zhuk, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gazov, No. 2, 97 (1976).

  8. T. Ytrehus, in Rarefied Gas Dynamics, edited by J. L. Potter (AIAA, New York, 1977).

    Google Scholar 

  9. C. Cercignani, in Rarefied Gas Dynamics, edited by P. Camparque (CEA, Paris, 1979), Vol. 1, p. 141.

    Google Scholar 

  10. C. Cercignani, in The Boltzmann Equation and its Applications (Springer-Verlag, New York, 1988).

    Google Scholar 

  11. S. I. Anisimov and V. V. Zhakhovskii, JETP Lett. 57, 99 (1993).

    ADS  Google Scholar 

  12. L. D. Landau and E. M. Lifshitz, Fluid Dynamics, 2nd ed. (Pergamon Press, Oxford, 1987).

    Google Scholar 

  13. E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations V.1: Nonstiff Problems [Russian translation] (Springer, Berlin, 1987).

    Google Scholar 

  14. D. W. Heermann, Computer Simulation Methods in Theoretical Physics (Springer-Verlag, Berlin, 1986).

    Google Scholar 

  15. L. Verlet, Phys. Rev. 159, 98 (1967).

    Article  ADS  Google Scholar 

  16. I. Z. Fisher, Statistical Theory of Liquids (University Press, Chicago, 1964).

    Google Scholar 

  17. A. N. Shiryaev, Probability [in Russian] (Nauka, Moscow, 1989).

    Google Scholar 

  18. J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures, 2nd & rev. ed. (Wiley, New York, 1986).

    Google Scholar 

  19. D. G. Triezenberg and R. Zwanzig, Phys. Rev. Lett. 28, 1183 (1972).

    Article  ADS  Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Statistical Physics, Pt. 1, 3rd. ed. (Pergamon Press, Oxford, 1980).

    Google Scholar 

  21. S. I. Anisimov (Ed.), Physical Kinetics and Transport Processes of Phase Transitions [in Russian] (Nauka i Tekhnika, Minsk, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 111, 1328–1346 (April 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhakhovskii, V.V., Anisimov, S.I. Molecular-dynamics simulation of evaporation of a liquid. J. Exp. Theor. Phys. 84, 734–745 (1997). https://doi.org/10.1134/1.558192

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558192

Keywords

Navigation