Skip to main content
Log in

On the simulation of temperature and salinity fields in the Arctic Ocean

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This paper considers the formation of the thermohaline structure of the Arctic Ocean: the formation of the salinity field and a freshwater reservoir in the Beaufort Sea and the transport of warm Atlantic water into the central part of the Arctic Ocean. A new version of the Finite Element Model of the Arctic Ocean (FEMAO) with a low spatial resolution is used. The main distinctions of this version are the following features: a new equation of state, a more sophisticated parameterization of vertical turbulence, modified formulations for the boundary conditions on open boundaries (using satellite data on the sea level) and at the upper boundary of the ocean, and the use of a variable eddy diffusivity in the parameterization of the eddy transport of a scalar. Our experiments indicated that the use of the parameterization of the eddy transport of a scalar enhances the transport of warm Atlantic waters to the central part of the Arctic Ocean through the Fram Strait; the results are most realistic when a variable coefficient is used. The Neptune effect has a contradictory role and, in the future, a higher spatial resolution should be used instead of this parameterization. We revealed that a key factor in the thermohaline fields on a large time scale is the interaction with the Atlantic Ocean, which is the source of heat and saline water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Proshutinsky, M. Steele, J. Zhang, et al., “Multinational Effort Studies Differences among Arctic Ocean Models,” EOS 82(51), 637–644 (2001).

    Article  Google Scholar 

  2. P. Uotila, D. M. Holland, M. A. Morales Maqueda, et al., “An Energy-Diagnostics Intercomparison of Coupled Ice-Ocean Arctic Models,” Ocean Model. 11(1–2), 1–27 (2006).

    Article  Google Scholar 

  3. I. M. Belkin, S. Levitus, J. Antonov, et al., “Great Salinity Anomalies in the North Atlantic,” Prog. Oceanogr. 41(1), 1–68 (1998).

    Article  Google Scholar 

  4. I. A. Shiklomanov, A. I. Shiklomanov, R. B. Lammers, et al., “The Dynamics of River Water Inflow to the Arctic Ocean,” in Fresh Water Budget of the Arctic Ocean, Ed. by E. L. Lewis, (Kluwer Acad, Norwell, MA, 2000), pp. 281–296.

    Google Scholar 

  5. A. Proshutinsky, R. H. Bourke, and F. A. McLaughlin, “The Role of the Beaufort Gyre in the Arctic Climate Variability: Seasonal to Decadal Climate Scales,” Gephys. Res. Lett 29(23), 2100 (2002). Doi: 10.1029/2002GL015847

    Article  Google Scholar 

  6. I. V. Polyakov, A. Y. Proshutinsky, and M. A. Johnson, “Seasonal Cycles in Two Regimes of Arctic Climate,” J. Geophys. Res. 104(C11), 25761–25788 (1999).

    Article  Google Scholar 

  7. S. Haakkinen, “An Arctic Source for the Great Salinity Anomaly: A Simulation of the Arctic Ice-Ocean System for 1955–1975,” J. Geophys. Res. 98(C9), 16397–16410 (1993).

    Article  Google Scholar 

  8. S. Haakkinen and A. Proshutinsky, “Freshwater Content Variability in the Arctic Ocean,” J. Geophys. Res. 109, C03051 (2004). Doi: 10.1029/2003JC001940

    Article  Google Scholar 

  9. M. Steele, W. Ermold, S. Hakkinen, et al., “Adrift in the Beaufort Gyre: A Model Intercomparison,” Geophys. Res. Lett. 28(15), 2935–2938 (2001).

    Article  Google Scholar 

  10. G. Holloway, F. Dupont, E. Golubeva, et al., “Water Properties and Circulation in Arctic Ocean Models,” J. Geophys. Res. 112, 03 (2007). Doi: 10.1029/2006JC003642

    Google Scholar 

  11. N. G. Yakovlev, “Reproduction of the Large-Scale State of Water and Sea Ice in the Arctic Ocean in 1948–2002: Part I. Numerical Model,” Izv. Atmos. Ocean. Phys. 45(3), 357–371 (2009).

    Article  Google Scholar 

  12. N. G. Yakovlev, “Reproduction of the Large-Scale State of Water and Sea Ice in the Arctic Ocean from 1948 to 2002: Part II. The State of Ice and Snow Cover,” Izv. Atmos. Ocean. Phys. 45(4), 478–494 (2009).

    Article  Google Scholar 

  13. C. L. Parkinson and W. M. Washington, “A Large-Scale Numerical Model of Sea Ice,” J. Geophys. Res. 84(C1), 311–337 (1979).

    Article  Google Scholar 

  14. W. D. Hibler Iii, “Modeling a Variable Thickness Sea Ice Cover,” Mon. Wea. Rev. 108(9), 1943–1973 (1980).

    Article  Google Scholar 

  15. G. M. Flato and W. D. Hibler Iii, “Ridging and Stress in Modeling the Thickness Distribution of Arctic Sea Ice,” J. Geophys. Res. 100(C9), 18611–18626 (1995).

    Article  Google Scholar 

  16. E. C. Hunke and J. K. Dukowicz, “An Elastic-Viscous-Plastic Model for Sea Ice Dynamics,” J. Phys. Oceanogr. 27(9), 1849–1867 (1997).

    Article  Google Scholar 

  17. E. C. Hunke, “Viscous-Plastic Sea Ice Dynamics in the EVP Model: Linearization Issues,” J. Comput. Phys. 170(1), 18–38 (2001).

    Article  Google Scholar 

  18. N. A. Dyanskii, V. Ya. Galin, A. V. Gusev, et al., “The Model of the Earth System Developed at the INM RAS,” Russ. J. Numer. Anal. Math. Modelling 25(5), 419–429 (2010).

    Article  Google Scholar 

  19. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, 5th. ed, Vol. 3: Fluid Dymanics (Butterworth and Heinemann, Oxford, 2000).

    Google Scholar 

  20. D. Brydon, S. Sun, and R. Bleck, “A New Approximation of the Equation of State for Seawater, Suitable for Numerical Ocean Models,” J. Geophys. Res. 104(C1), 1537–1540 (1999).

    Article  Google Scholar 

  21. D. R. Jackett, T. J. McDougall, R. Feistel, et al., “Algorithms for Density, Potential Temperature, Conservative Temperature, and Freezing Temperature of Seawater,” J. Atmos. Ocean. Technol. 23(12), 1709–1728 (2006).

    Article  Google Scholar 

  22. G. I. Marchuk, V. P. Kochergin, V. I. Klimok, et al., “Mathematical Modeling of Surface Turbulence in the Ocean,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 12(8), 841–849 (1976).

    Google Scholar 

  23. V. P. Kochergin, “Three-Dimensional Prognostic Models,” in Three-Dimensional Coastal Ocean Models, Ed. by N. Heaps, AGU Coast. Estuar. Sci. 4, 201–208 (1987).

  24. I. V. Polyakov, “Diagnostic Computations of the Arctic Ocean Currents and Sea Level Variations,” Izv. Atmos. Ocean. Phys. 32(5), 637–649 (1996).

    Google Scholar 

  25. Z. Kowalik and I. Polaykov, “Diurnal Tides Over Kashevarov Bank, Okhotsk Sea,” J. Geophys. Res. 104(C3), 5361–5380 (1999).

    Article  Google Scholar 

  26. H. Goosse, Development of a Global Coupled Sea-Ice Ocean Model, Progress Report 1995, Louvain-la-Neuve: Institut d’Astronomie et de G?ophysique G. Lemátre, 1995), vol. 5.

    Google Scholar 

  27. L. H. Kantha and C. A. Clayson, “An Improved Mixed Layer Model for Geophysical Applications,” J. Geophys. Res. 99(C12), 25235–25266 (1994).

    Article  Google Scholar 

  28. G. L. Mellor and T. Yamada, “Development of a Turbulence Closure Model for Geophysical Fluid Problems,” Rev. Geophys. Spac. Phys. 20(4), 851–875 (1982).

    Article  Google Scholar 

  29. P. D. Craig and M. L. Banner, “Modeling Wave-Enhanced Turbulence in the Ocean Surface Layer,” J. Phys. Oceanogr. 24(12), 2546–2559 (1994).

    Article  Google Scholar 

  30. R. A. Flather, “A Tidal Model of the Northwest European Continental Shelf,” Memories de la Societe Royale des Sciences de Liege 6(10), 141–164 (1976).

    Google Scholar 

  31. J. Proudman, “The Effect of Coastal Friction on the Tides,” Mon. Not. Roy. Astron. Soc. Geophys. 5(1), 23–26.

  32. V. M. Kamenkovich, Foundations of the Ocean Dynamics (Gidrometeoizdat, Leningrad, 1973).

    Google Scholar 

  33. R. X. Huang, “Real Freshwater Flux as a Natural Boundary Condition for the Salinity Balance and Thermohaline Circulation Forced by Evaporation and Precipitation,” J. Phys. Oceanogr. 23(11), 2428–2446 (1993).

    Article  Google Scholar 

  34. M. Prange and R. Gerdes, “The Role of Surface Freshwater Flux Boundary Conditions in Arctic Ocean Modelling,” Ocean Model. 13(1), 25–43 (2006).

    Article  Google Scholar 

  35. P. R. Gent and J. C. McWilliams, “Isopycnal Mixing in Ocean Circulation Models,” J. Phys. Oceanogr. 20(1), 150–155 (1990).

    Article  Google Scholar 

  36. R. C. Pacanowski and S. M. Griffies, The MOM3 Manual (NOAA, Geophysical Fluid Dynamics Laboratory, 1999).

  37. M. Visbeck, J. Marshall, T. Haine, et al., “Specification of Eddy Transfer Coefficients in Coarse Resolution Ocean Circulation Models,” J. Phys. Oceanogr. 27(3), 381–402 (1997).

    Article  Google Scholar 

  38. G. Holloway, “Representing Topographic Stress for Large-Scale Ocean Models,” J. Phys. Oceanogr. 22(9), 1033–1046 (1992).

    Article  Google Scholar 

  39. E. Kazantsev, J. Sommeria, and J. Verron, “Subgrid-Scale Eddy Parameterization by Statistical Mechanics in a Barotropic Ocean Model,” J. Phys. Oceanogr. 28(6), 1017–1042 (1998).

    Article  Google Scholar 

  40. I. Polyakov, “An Eddy Parameterization Based on Maximum Entropy Production with Application to Modeling of the Arctic Ocean Circulation,” J. Phys. Oceanogr. 31(8), 2255–2270 (2001).

    Article  Google Scholar 

  41. M. Steele, R. Morley, and W. Ermold, “PHC: A Global Ocean Hydrography with a High Quality Arctic Ocean,” J. Clim. 14(9), 2079–2087 (2001).

    Article  Google Scholar 

  42. O. M. Pokrovsky and L. A. Timokhov, “The Reconstruction of the Winter Fields of Water Temperature and Salinity in the Arctic Ocean,” Oceanology 42(6), 822–830 (2002).

    Google Scholar 

  43. A. Proshutinsky, R. Krishfield, M. -L. Timmermans, et al., “The Beaufort Gyre Fresh Water Reservoir: State and Variability from Observations,” J. Geophys. Res. 114, A10 (2009). Doi: 10.1029/2008JC005104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Iakovlev.

Additional information

Original Russian Text © N.G. Iakovlev, 2012, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2012, Vol. 48, No. 1, pp. 100–116.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iakovlev, N.G. On the simulation of temperature and salinity fields in the Arctic Ocean. Izv. Atmos. Ocean. Phys. 48, 86–101 (2012). https://doi.org/10.1134/S0001433812010136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433812010136

Keywords

Navigation