Skip to main content
Log in

Interannual variations in the components of heat budget in the upper layer of the North Atlantic in different seasons

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Seasonal variability of interannual fluctuations of the heat balance components of the upper quasi-homogeneous ocean layer (UQL) in the North Atlantic is analyzed by processing the reanalysis data set for the period of 1959–2011. It is shown that interannual variations in the components of the UQL heat budget are characterized by pronounced regional features in all seasons. In the tropics and subtropics, heat balance is quasistationary and is determined by the nonlocal processes, such as heat advection and horizontal mixing. In the subpolar latitudes, nonstationarity (in the spring) and heat fluxes at the UQL boundary (in the autumn and in the winter) are also important. A major role in the interannual variability of the UQL temperature in the vicinity of jet currents of the Gulf Stream type is played in all seasons by the fluctuations of horizontal heat advection. However, the contribution of interannual fluctuations of the individual components of the heat budget to variability of the UQL temperature varies considerably in different seasons. The interannual fluctuations of the local variation in the UQL temperature are characterized by the largest variability in the spring and the lowest one in the autumn. The greatest contribution of the variations in the horizontal heat advection to the change in the UQL temperature at the interannual scale is recorded in the winter, and the lowest one is in the summer. The contribution of the interannual variations in the heat fluxes at the UQL upper boundary to the variability of the UQL temperature is the highest in the summer and the lowest in the autumn. Fluctuations of the heat fluxes at the UQL lower boundary do not have a significant impact on the interannual variations in the UQL temperature for the whole water area. The exception is small areas in the region of the formation of the North Atlantic deep water in the autumn–winter period and in the vicinity of the Equatorial Counter Current in the spring–summer period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. V. Shuleikin, “Draft of the Great Atlantic Expedition project,” Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz., No. 1, 19–26 (1937).

    Google Scholar 

  2. C. O’D. Iselin, Preliminary Report on Long-Period Variations in the Transport of the Gulf Stream System (Massachusetts Institute of Technology, Cambridge and Woods Hole, 1940), Pap. Phys. Oceanogr. Meteorol., Vol. 8, No. 1.

    Google Scholar 

  3. J. Bjerknes, “Atlantic air–sea interaction,” Adv. Geophys 10, 1–82 (1964).

    Article  Google Scholar 

  4. R. Salmon and M. C. Hendershott, “Large scale air–sea interactions with a simple general circulation model,” Tellus 28 (3), 228–242 (1976).

    Article  Google Scholar 

  5. C. Frankignoul and R. W. Reynolds, “Testing a dynamical model for mid-latitude sea surface temperature anomalies,” J. Phys. Oceanogr. 13 (7), 1131–1145 (1983).

    Article  Google Scholar 

  6. G. R. Halliwell, Jr. and D. A. Mayer, “Frequency response properties of forced climatic SST anomaly variability in the North Atlantic,” J. Clim. 9 (12), 3575–3587 (1996).

    Article  Google Scholar 

  7. C. Frankignoul, A. Czaja, and B. L’Heveder, “Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models,” J. Clim. 11 (9), 2310–2324 (1998).

    Article  Google Scholar 

  8. U. Luksch, “Simulation of North Atlantic low-frequency SST variability,” J. Clim. 9 (9), 2083–2092 (1996).

    Article  Google Scholar 

  9. A. Czaja and J. Marshall, “Observations of atmosphere–ocean coupling in the North Atlantic,” Q. J. R. Meteorol. Soc. 127 (576), 1893–1916 (2001).

    Article  Google Scholar 

  10. D. R. Cayan, “Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature,” J. Phys. Oceanogr. 22 (8), 859–881 (1992).

    Article  Google Scholar 

  11. R. E. Davis, R. deSzoeke, D. Halpern, and P. Niiler, “Variability in the upper ocean during MILE. Part I: The heat and momentum balances,” Deep Sea Res. 28 (12), 1427–1451 (1981).

    Article  Google Scholar 

  12. A. I. Ugryumov, “On large-scale oscillations of water surface temperature in the North Atlantic,” Meteorol. Gidrol. 5, 12–22 (1973).

    Google Scholar 

  13. B. A. Birman and T. G. Pozdnyakova, Climatic Characteristics of Heat Exchange in Zones of Ocean–Atmosphere Active Interaction (Gidromettsentr SSSR, Moscow, 1985) [in Russian].

    Google Scholar 

  14. S. K. Gulev, A. V. Kolinko, and S. S. Lappo, Synoptic Ocean–Atmosphere Interaction in Midlatitudes (Gidrometeoizdat, St. Petersburg, 1994) [in Russian].

    Google Scholar 

  15. M. A. Alexander, J. D. Scott, and C. Deser, “Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model,” J. Geophys. Res. 105 (C7), 16823–16842 (2000).

    Article  Google Scholar 

  16. N. P. Bulgakov, Convection in the Ocean (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  17. M. A. Alexander and C. Deser, “A mechanism for the recurrence of wintertime midlatitude SST anomalies,” J. Phys. Oceanogr. 25 (1), 122–137 (1995).

    Article  Google Scholar 

  18. M. S. Timlin, M. A. Alexander, and C. Deser, “On the reemergence of North Atlantic SST anomalies,” J. Clim. 15 (18), 2707–2712 (2002).

    Article  Google Scholar 

  19. C. Deser, M. A. Alexander, and M. S. Timlin, “Understanding the persistence of sea surface temperature anomalies in midlatitudes,” J. Clim. 16 (1), 57–72 (2003).

    Article  Google Scholar 

  20. U. S. Bhatt, M. A. Alexander, and D. S. Battisti, “Atmosphere–ocean interaction in the North Atlantic: Nearsurface climate variability,” J. Clim. 11 (7), 1615–1632 (1998).

    Article  Google Scholar 

  21. M. Watanabe and M. Kimoto, “On the persistence of decadal SST anomalies in the North Atlantic,” J. Clim. 13 (16), 3017–3028 (2000).

    Article  Google Scholar 

  22. S. Dong and K. A. Kelly, “Heat budget in the Gulf Stream region: The importance of heat storage and advection,” J. Phys. Oceanogr. 34 (5), 1214–1231 (2004).

    Article  Google Scholar 

  23. S. Dong, S. L. Hautala, and K. A. Kelly, “Interannual variations in upper-ocean heat content and heat transport convergence in the western North Atlantic,” J. Phys. Oceanogr. 37 (11), 2682–2697 (2007).

    Article  Google Scholar 

  24. M. W. Buckley, R. M. Ponte, G. Forget, et al., “Determining the origins of advective heat transport convergence variability in the North Atlantic,” J. Clim. 28 (10), 3943–3956 (2015).

    Article  Google Scholar 

  25. J. P. Grist, S. A. Josey, R. Marsh, et al., “The roles of surface heat flux and ocean heat transport convergence in determining Atlantic Ocean temperature variability,” Ocean Dyn. 60 (4), 771–790 (2010). doi 10.1007/ s10236-010-0292-4

    Article  Google Scholar 

  26. M. Sonnewald and J. J.-M. Hirschi, R. Marsh, et al., “Atlantic meridional ocean heat transport at 26N: Impact on subtropical ocean heat content variability,” Ocean Sci. 9 (6), 1057–1069 (2013).

    Article  Google Scholar 

  27. A. B. Polonsky and P. A. Sukhonos, “Evaluation of the heat balance constituents of the upper mixed layer in the North Atlantic,” Izv., Atmos. Ocean. Phys. 52 (6), 649–658 (2016).

    Article  Google Scholar 

  28. A. Ostrovskii and J. Font, “Advection and dissipation rates in the upper ocean mixed layer heat anomaly budget over the North Atlantic in summer,” J. Geophys. Res. 108 (C12), 3376 (2003). doi 10.1029/2003JC001967

    Article  Google Scholar 

  29. N. Verbrugge and G. Reverdin, “Contribution of horizontal advection to the interannual variability of sea surface temperature in the North Atlantic,” J. Phys. Oceanogr. 33 (5), 964–978 (2003).

    Article  Google Scholar 

  30. M. A. Balmaseda, A. Vidard, and D. L. T. Anderson, “The ECMWF ocean analysis system: ORA-S3,” Mon. Weather Rev. 136 (8), 3018–3034 (2008). doi 10.1175/ 2008MWR2433.1

    Article  Google Scholar 

  31. R. C. Pacanowski and S. G. H. Philander, “Parameterization of vertical mixing in numerical models of tropical oceans,” J. Phys. Oceanogr. 11 (11), 1443–1451 (1981).

    Article  Google Scholar 

  32. J.-O. Wolff, E. Maier-Reimer, and S. Legutke, The ocean primitive equation model, Tech. Rep. No. 13, German Climate Computer Center (DKRZ), Hamburg, 1997.

    Google Scholar 

  33. S. M. Uppala, P. W. Kallberg, A. J. Simmons, et al., “The ERA-40 reanalysis,” Q. J. R. Meteorol. Soc. 131B (612), 2961–3012 (2005). doi 10.1256/qj.04.176

    Article  Google Scholar 

  34. Modeling and Prediction of the Upper Layers of the Ocean, Ed. by E. B. Kraus (Pergamon, Oxford, 1977; Gidrometeoizdat, Leningrad, 1979), pp. 175–208.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Polonsky.

Additional information

Original Russian Text © A.B. Polonsky, P.A. Sukhonos, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2017, Vol. 53, No. 4, pp. 523–531.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polonsky, A.B., Sukhonos, P.A. Interannual variations in the components of heat budget in the upper layer of the North Atlantic in different seasons. Izv. Atmos. Ocean. Phys. 53, 459–466 (2017). https://doi.org/10.1134/S0001433817040107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433817040107

Keywords

Navigation