Skip to main content
Log in

Stochastic monotonicity and duality for one-dimensional Markov processes

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The theory of monotonicity and duality is developed for general one-dimensional Feller processes, extending the approach from [1]. Moreover it is shown that local monotonicity conditions (conditions on the Lévy kernel) are sufficient to prove the well-posedness of the corresponding Markov semigroup and process, including unbounded coefficients and processes on the half-line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Kolokoltsov, “Measure-valued limits of interacting particle systems with k-nary interactions. I. Onedimensional limits,” Probab. Theory Related Fields 126(3), 364–394 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  2. W. J. Anderson, Continuous-Time Markov Chains. An Applications-Oriented Approach, in Springer Ser. Statist. Probab. Appl. (Springer-Verlag, New York, 1991).

    Google Scholar 

  3. J. Conlisk, “Monotone mobility matrices,” J. Math. Sociol. 15(3–4), 173–191 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  4. V. Dardoni, “Monotone mobility matrices and income distribution,” Social Choice and Welfare 12, 181–192 (1995).

    Google Scholar 

  5. E. Maasoumi, “On mobility,” in Handbook of Applied Economic Statistics, Ed. by A. Ullah and D. E. A. Giles (Marcel Dekker, New York, 1998), pp. 119–175.

    Google Scholar 

  6. O. Kallenberg, Foundations of Modern Probability, in Probab. Appl. (N. Y.) (Springer-Verlag, New York, 2002).

    Google Scholar 

  7. M.-F. Chen and F.-Y. Wang, “On order-preservation and positive correlations for multidimensional diffusion processes,” Probab. Theory Related Fields 95(3), 421–428 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Chen and H. Zhang, “Stochastic monotonicity and duality for continuous time Markov chains with general Q-matrix,” Southeast Asian Bull. Math. 23(3), 383–408 (1999).

    MATH  MathSciNet  Google Scholar 

  9. M.-F. Chen, From Markov Chains to Non-Equilibrium Particle Systems (World Scientific Publ., River Edge, NJ, 2004).

    Book  MATH  Google Scholar 

  10. Y. Zhang, “Sufficient and necessary conditions for stochastic comparability of jump processes,” Acta Math. Sin. (Engl. Ser.) 16(1), 99–102 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Samorodnitsky and M. S. Taqqu, “Stochastic monotonicity and Slepian-type inequalities for infinitely divisible and stable random vectors,” Ann. Probab. 21(1), 143–160 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Q. Lan, “Stochastic monotonicity and positive correlations of a type of particle systems on Polish spaces,” Acta Math. Sinica (Chin. Ser.) 52(2), 309–314 (2009).

    MATH  MathSciNet  Google Scholar 

  13. J.M. Wang, “Stochastic comparison and preservation of positive correlations for Lévy-type processes,” Acta Math. Sin. (Engl. Ser.) 25(5), 741–758 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  14. V. N. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations, in Cambridge Tracts in Math. (Cambridge Univ. Press, Cambridge, 2010), Vol. 182.

    Google Scholar 

  15. R. F. Bass, “Uniqueness in law for pure jump Markov processes,” Probab. Theory Related Fields 79(2), 271–287 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  16. N. Jacob, Pseudo-Differential Operators and Markov Processes, Vol. I: Fourier Analysis and Semigroups (Imperial College Press, London, 2001); Vol. II: Generators and Their Potential Theory (Imperial College Press, London, 2002); Vol. III: Markov Processes and Applications (Imperial College Press, London, 2005).

    Google Scholar 

  17. V. N. Kolokoltsov, “On Markov processes with decomposable pseudo-differential generators,” Stoch. Stoch. Rep. 76(1), 1–44 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  18. V. N. Kolokoltsov, “The Lévy-Kchintchine type operators with variable Lipschitz continuous coefficients generate linear or nonlinear Markov processes and semigroups,” Probab. Theory Related Fields (2009); online first: arXiv: math. PR/0911.5688

  19. V. N. Kolokoltsov, Markov Processes, Semigroups, and Generators, Monograph (De Gruyter, Berlin, 2011) (in press).

    MATH  Google Scholar 

  20. A. Mijatovic and M. Pistorius, Continuously Monitored Barrier Options under Markov Processes, arXiv: q-fin.PR/0908.4028.

  21. S. N. Ethier and Th. G. Kurtz, Markov Processes. Characterization and Convergence, in Wiley Ser. Probab.Math. Statist. Probab. Math. Statist. (John Wiley & Sons, New York, 1986).

    Google Scholar 

  22. V. N. Kolokoltsov, “Nonlinear Markov semigroups and interacting Lévy type processes,” J. Stat. Phys. 126(3), 585–642 (2007).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kolokol’tsov.

Additional information

Published in Russian in Matematicheskie Zametki, 2011, Vol. 89, No. 5, pp. 694–704.

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolokol’tsov, V.N. Stochastic monotonicity and duality for one-dimensional Markov processes. Math Notes 89, 652–660 (2011). https://doi.org/10.1134/S0001434611050063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434611050063

Keywords

Navigation