Skip to main content
Log in

ARGO data assimilation into the ocean dynamics model with high spatial resolution using Ensemble Optimal Interpolation (EnOI)

  • Marine Physics
  • Published:
Oceanology Aims and scope

Abstract

The article proposes parallel implementation of the Ensemble Optimal Interpolation (EnOI) data assimilation (DA) method in eddy-resolving World Ocean circulation model. The results of DA experiments in North Atlantic with ARGO drifters are compared with the multivariate optimal interpolation (MVOI) DA scheme. The sensitivity of the model error, i.e., the difference between the model and observations depending on the number of ensemble elements, is also assessed and presented. The effectiveness of this method over the MVOI scheme is confirmed. The model outputs with and without assimilation are also compared with independent sea surface temperature data from ARMOR 3d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Agoshkov, V. M. Ipatova, V. B. Zalesnyi, E. I. Parmuzin, and V. P. Shutyaev, “Problems of variational assimilation of observational data for ocean general circulation models and methods for their solution,” Izv. Atmos. Ocean. Phys. 46 (6), 677–712 (2010).

    Article  Google Scholar 

  2. V. I. Agoshkov, E. I. Parmuzin, and V. P. Shutyaev, “Observational data assimilation in the problem of Black Sea circulation and sensitivity analysis of its solution,” Izv., Atmos. Ocean. Phys. 49 (6), 592–602 (2013).

    Article  Google Scholar 

  3. K. P. Belyaev, C. A. S. Tanajura, and N. P. Tuchkova, “Comparison of methods for argo drifters data assimilation into a hydrodynamical model of the ocean,” Oceanology (Engl. Transl.) 52 (5), 593–603 (2012).

    Google Scholar 

  4. R. A. Ibrayev, R. N. Khabeev, and K. V. Ushakov, “Eddy-resolving 1/10° model of the World Ocean,” Izv., Atmos. Ocean. Phys. 48 (1), 37–46 (2012).

    Article  Google Scholar 

  5. V. V. Kalmykov, R. A. Ibrayev, “The overlapping algorithm for solving shallow water equations on massivelyparallel architectures with distributed memory,” Vestnik UGATU 17 (5 (58)), 252–259 (2013).

    Google Scholar 

  6. V. V. Kalmykov, R. A. Ibrayev, and K. V. Ushakov, “The problems and challenges in the modeling of the high resolution Earth system,” in Supercomputer Technologies in Science, Education, and Industry: Almanac, Ed. by V. A. Sadovnichii, (Moscow State Univ., Moscow, 2014), pp. 14–22.

    Google Scholar 

  7. V. V. Kalmykov and R. A. Ibrayev, “A framework for the ocean-ice-atmosphere-land coupled modeling on massively-parallel architectures” Vychisl. Metody Programm., No. 14, 88–95 (2013).

    Google Scholar 

  8. M. N. Kaurkin, R. A. Ibrayev, and K. P. Belyaev, “Data assimilation in the ocean circulation model of high spatial resolution using the methods of parallel programming,” Russ. Meteorol. Hydrol. 41 (7), 479–486 (2016).

    Article  Google Scholar 

  9. V. V. Knysh, G. K. Korotaev, A. I. Mizyuk, and A. S. Sarkisyan, “Assimilation of hydrological observation data for calculating currents in seas and oceans,” Izv., Atmos. Ocean. Phys. 48 (1), 57–73 (2012).

    Article  Google Scholar 

  10. G. I. Marchuk and V. P. Shutyaev, “Conjugate equations and iterative algorithms in the tasks of variational data assimilation,” Tr. Inst. Matem. Mekh. im. N.N. Krasovskogo 17 (2), 136–150 (2011).

    Google Scholar 

  11. K. V. Ushakov, T. B. Grankina, and R. A. Ibrayev, “Modeling the water circulation in the North Atlantic in the scope of the CORE-II experiment,” Izv., Atmos. Ocean. Phys. 52 (4), 365–375 (2016).

    Article  Google Scholar 

  12. K. V. Ushakov, R. A. Ibrayev, and V. V. Kalmykov, “Simulation of the World ocean climate with a massively parallel numerical model,” Izv., Atmos. Ocean. Phys. 51 (4), 362–380 (2015).

    Article  Google Scholar 

  13. J. I. Antonov, D. Seidov, T. P. Boyer, et al., World Ocean Atlas 2009, Ed. by S. Levitus (US Government Printing Office, Washington, 2010).

  14. R. Bleck, “An oceanic general circulation model framed in hybrid isopycnic Cartesian coordinates,” Ocean Model. 4, 55–88 (2002).

    Article  Google Scholar 

  15. G. Evensen, Data Assimilation, the Ensemble Kalman Filter, 2nd ed. (Berlin, Springer-Verlag, 2009).

    Google Scholar 

  16. GODAE Ocean View Science Team, Work Plan 2009, 2013, http://www.godae-oceanview.org.

  17. S. M. Griffies, A. Biastoch, C. Böning, et al., “Coordinated ocean-ice reference experiments (COREs),” Ocean Model. 26 (1–2), 1–46 (2009).

    Article  Google Scholar 

  18. E. Kalnay, H. Li, T. Miyoshi, et al., “4-D-Var or ensemble Kalman filter?” Tellus A 59 (5), 758–773 (2007).

    Article  Google Scholar 

  19. E. Kalnay, Atmospheric Modeling, Data Assimilation, and Predictability (Cambridge Univ. Press, Cambridge, 2003).

    Google Scholar 

  20. W. Large and S. Yeager, “The global climatology of an interannually varying air–sea flux data set,” Clim. Dyn. 33 (2–3), 341–364 (2009).

    Article  Google Scholar 

  21. G. Larnicol, S. Guinehut, M.-H. Rio, et al., “The global observed ocean products of the French Mercator project,” Proceedings of the Symp. on 15 Years of Progress in Radar Altimetry, March 13–18, 2006 (Venice, 2006).

    Google Scholar 

  22. P. R. Oke, G. B. Brassington, D. A. Griffin, and A. Schiller, “Ocean data assimilation: a case for ensemble optimal interpolation,” Austral. Meteorol. Oceanogr. J. 59, 67–76 (2010).

    Google Scholar 

  23. P. Sakov, F. Counillon, L. Bertino, et al., “TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic,” Ocean Sci. 8, 633–656 (2012).

    Article  Google Scholar 

  24. A. Schiller and G. B. Brassington, Operational Oceanography in the 21st Century, Ed. by A. Schiller and G. B. Brassington (Springer-Verlag, Dordrecht, 2011).

  25. C. Schrum and J. Backhaus, “Sensitivity of atmosphere-ocean heat exchange and heat content in North Sea and Baltic Sea. A comparative assessment,” Tellus A 51, 526–549 (1999).

    Article  Google Scholar 

  26. C. A. S. Tanajura and K. Belyaev, “A sequential data assimilation method based on the properties of a diffusion-type process,” Appl. Math. Model. 33 (5), 2165–2174 (2009).

    Article  Google Scholar 

  27. J. Xie and J. Zhu, “Ensemble optimal interpolation schemes for assimilating Argo profiles into a hybrid coordinate ocean model,” Ocean Model. 33, 283–298 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Kaurkin.

Additional information

Original Russian Text © M.N. Kaurkin, R.A. Ibrayev, K.P. Belyaev, 2016, published in Okeanologiya, 2016, Vol. 56, No. 6, pp. 852–860.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaurkin, M.N., Ibrayev, R.A. & Belyaev, K.P. ARGO data assimilation into the ocean dynamics model with high spatial resolution using Ensemble Optimal Interpolation (EnOI). Oceanology 56, 774–781 (2016). https://doi.org/10.1134/S0001437016060059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437016060059

Navigation