Skip to main content
Log in

Mitochondria as source of reactive oxygen species under oxidative stress. Study with novel mitochondria-targeted antioxidants — the “Skulachev-ion” derivatives

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Production of reactive oxygen species (ROS) in mitochondria was studied using the novel mitochondria-targeted antioxidants (SkQ) in cultures of human cells. It was shown that SkQ rapidly (1–2 h) and selectively accumulated in mitochondria and prevented oxidation of mitochondrial components under oxidative stress induced by hydrogen peroxide. At nanomolar concentrations, SkQ inhibited oxidation of glutathione, fragmentation of mitochondria, and translocation of Bax from cytosol into mitochondria. The last effect could be related to prevention of conformational change in the adenine nucleotide transporter, which depends on oxidation of critical thiols. Mitochondria-targeted antioxidants at nanomolar concentrations prevented accumulation of ROS and cell death under oxidative stress. These effects required 24 h or more (depending on the cell type) preincubation, and this was not related to slow induction of endogenous antioxidant systems. It is suggested that SkQ slowly accumulates in a small subpopulation of mitochondria that have decreased membrane potential and produce the major part of ROS under oxidative stress. This population was visualized in the cells using potential-sensitive dye. The possible role of the small fraction of “bad” mitochondria in cell physiology is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ANT:

adenine nucleotide translocator

CM-DCF-DA:

5-(-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate

C12TPP:

dodecyltriphenylphosphonium

FCCP:

carbonyl cyanide p-trifluoromethoxyphenylhydrazone

ROS:

reactive oxygen species

SkQ:

cationic derivative of plastoquinone

SkQ1:

10-(6′-plastoquinonyl) decyltriphenylphosphonium

SkQR1:

10-(6′-plastoquinonyl) decylrhodamine 19

TMRM:

tetramethylrhodamine methyl ester

References

  1. Liberman, E. A., Topali, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Nature, 222, 1076–1078.

    Article  CAS  PubMed  Google Scholar 

  2. Cocheme, H. M., Kelso, G. F., James, A. M., Ross, M. F., Trnka, J., Mahendiran, T., Asin-Cayuela, J., Blaikie, F. H., Manas, A. R., Porteous, C. M., Adlam, V. J., Smith, R. A., and Murphy, M. P. (2007) Mitochondrion, 7, 94–102.

    Article  Google Scholar 

  3. Armstrong, J. S. (2008) Antioxid. Redox. Signal., 10, 575–578.

    Article  CAS  PubMed  Google Scholar 

  4. Antonenko, Y. N., Roginsky, V. A., Pashkovskaya, A. A., Rokitskaya, T. I., Kotova, E. A., Zaspa, A. A., Chernyak, B. V., and Skulachev, V. P. (2008) J. Membr. Biol., 222, 141–149.

    Article  CAS  PubMed  Google Scholar 

  5. Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009) Biochim. Biophys. Acta, 1787, 437–461.

    Article  CAS  PubMed  Google Scholar 

  6. Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Y., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Y., Yaguzhinsky, L. S., Zamyatnin, A. A., Jr., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1273–1287.

    CAS  PubMed  Google Scholar 

  7. Anisimov, V. N., Bakeeva, L. E., Egormin, P. A., Filenko, O. F., Isakova, E. F., Manskikh, V. N., Mikhelson, V. M., Panteleeva, A. A., Pasyukova, E. G., Pilipenko, D. I., Piskunova, T. S., Popovich, I. G., Roshchina, N. V., Rybina, O. Y., Saprunova, V. B., Samoylova, T. A., Semenchenko, A. V., Skulachev, M. V., Spivak, I. M., Tsybul’ko, E. A., Tyndyk, M. L., Vyssokikh, M. Y., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1329–1342.

    CAS  PubMed  Google Scholar 

  8. Bakeeva, L. E., Barskov, I. V., Egorov, M. V., Isaev, N. K., Kapelko, V. I., Kazachenko, A. V., Kirpatovsky, V. I., Kozlovsky, S. V., Lakomkin, V. L., Levina, S. B., Pisarenko, O. I., Plotnikov, E. Y., Saprunova, V. B., Serebryakova, L. I., Skulachev, M. V., Stelmashook, E. V., Studneva, I. M., Tskitishvili, O. V., Vasilyeva, A. K., Victorov, I. V., Zorov, D. B., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1288–1299.

    CAS  PubMed  Google Scholar 

  9. Neroev, V. V., Archipova, M. M., Bakeeva, L. E., Fursova, A. Z., Grigorian, E. N., Grishanova, A. Y., Iomdina, E. N., Ivashchenko, Z., Katargina, L. A., Khoroshilova-Maslova, I. P., Kilina, O. V., Kolosova, N. G., Kopenkin, E. P., Korshunov, S. S., Kovaleva, N. A., Novikova, Y. P., Philippov, P. P., Pilipenko, D. I., Robustova, O. V., Saprunova, V. B., Senin, I. I., Skulachev, M. V., Sotnikova, L. F., Stefanova, N. A., Tikhomirova, N. K., Tsapenko, I. V., Shchipanova, A. I., Zinovkin, R. A., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1317–1328.

    CAS  PubMed  Google Scholar 

  10. Pletjushkina, O. Y., Fetisova, E. K., Lyamzaev, K. G., Ivanova, O. Y., Domnina, L. V., Vyssokikh, M. Y., Pustovidko, A. V., Vasiliev, J. M., Murphy, M. P., Chernyak, B. V., and Skulachev, V. P. (2005) Cell Death Differ., 12, 1442–1444.

    Article  CAS  PubMed  Google Scholar 

  11. Chernyak, B. V., Izyumov, D. S., Lyamzaev, K. G., Pashkovskaya, A. A., Pletjushkina, O. Y., Antonenko, Y. N., Sakharov, D. V., Wirtz, K. W., and Skulachev, V. P. (2006) Biochim. Biophys. Acta, 1757, 525–534.

    Article  CAS  PubMed  Google Scholar 

  12. Saini, H. K., Machackova, J., and Dhalla, N. S. (2004) Antioxid. Redox. Signal., 6, 393–404.

    Article  CAS  PubMed  Google Scholar 

  13. Skulachev, V. P. (2001) Trends Biochem. Sci., 26, 23–29.

    Article  CAS  PubMed  Google Scholar 

  14. Benard, G., and Karbowski, M. (2009) Semin. Cell Dev. Biol., 20, 365–374.

    Article  CAS  PubMed  Google Scholar 

  15. Adams, J. M., and Cory, S. (2007) Curr. Opin. Immunol., 19, 488–496.

    Article  CAS  PubMed  Google Scholar 

  16. Crompton, M. (2000) J. Physiol., 15, 11–21.

    Article  Google Scholar 

  17. Vyssokikh, M. Y., and Brdiczka, D. (2003) Acta Biochim. Pol., 50, 389–404.

    CAS  PubMed  Google Scholar 

  18. Halestrap, A. P., and Brennerb, C. (2003) Curr. Med. Chem., 10, 1507–1525.

    Article  CAS  PubMed  Google Scholar 

  19. Klingenberg, M. (2008) Biochim. Biophys. Acta, 1778, 1978–2021.

    Article  CAS  PubMed  Google Scholar 

  20. Sheridan, C., Delivani, P., Cullen, S. P., and Martin, S. J. (2008) Mol. Cell, 22, 570–585.

    Article  Google Scholar 

  21. Kuznetsov, A. V., and Margreiter, R. (2009) Int. J. Mol. Sci., 10, 1911–1929.

    Article  CAS  PubMed  Google Scholar 

  22. Lemasters, J. J., and Ramshesh, V. K. (2007) Methods Cell Biol., 80, 283–295.

    Article  CAS  PubMed  Google Scholar 

  23. Twig, G., Elorza, A., Molina, A. J., Mohamed, H., Wikstrom, J. D., Walzer, G., Stiles, L., Haigh, S. E., Katz, S., Las, G., Alroy, J., Wu, M., Py, B. F., Yuan, J., Deeney, J. T., Corkey, B. E., and Shirihai, O. S. (2008) EMBO J., 27, 433–446.

    Article  CAS  PubMed  Google Scholar 

  24. Belousov, V. V., Fradkov, A. F., Lukyanov, K. A., Staroverov, D. B., Shakhbazov, K. S., Terskikh, A. V., and Lukyanov, S. (2006) Nat. Methods, 3, 281–286.

    Article  CAS  PubMed  Google Scholar 

  25. Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L., and Sollott, S. J. (2000) J. Exp. Med., 192, 1001–1014.

    Article  CAS  PubMed  Google Scholar 

  26. Skulachev, V. P. (2005) IUBMB Life, 57, 305–310.

    Article  CAS  PubMed  Google Scholar 

  27. Storz, P. (2007) Trends Cell Biol., 17, 13–18.

    Article  CAS  PubMed  Google Scholar 

  28. Skulachev, V. P., and Longo, V. D. (2005) Ann. N. Y. Acad. Sci., 1057, 145–164.

    Article  CAS  PubMed  Google Scholar 

  29. Harman, D. (1956) J. Gerontol., 11, 298–300.

    CAS  PubMed  Google Scholar 

  30. Greaves, L. C., Beadle, N. E., Taylor, G. A., Commane, D., Mathers, J. C., Khrapko, K., and Turnbull, D. M. (2009) Aging Cell, 8, 566–572.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Chernyak.

Additional information

Published in Russian in Biokhimiya, 2010, Vol. 75, No. 2, pp. 149–157.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izyumov, D.S., Domnina, L.V., Nepryakhina, O.K. et al. Mitochondria as source of reactive oxygen species under oxidative stress. Study with novel mitochondria-targeted antioxidants — the “Skulachev-ion” derivatives. Biochemistry Moscow 75, 123–129 (2010). https://doi.org/10.1134/S000629791002001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791002001X

Key words

Navigation