Skip to main content
Log in

The temperature effect on cardiac ryanodine receptor gating and conductance: Mathematical modeling

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The temperature effect on cardiac ryanodine receptor (RyR) function has been studied within the electron-conformational (EC) model. It’s shown that a simple EC model with an Arrhenius-like temperature dependence of the “internal” and “external” frictions and a specific thermosensitivity of the tunnelling “open↔closed” transitions can provide both qualitative and quantitative description of the temperature effects for isolated RyRs. The potential of the model was illustrated by explaining the experimental data on the temperature dependence of isolated sheep cardiac RyR gating and conductance (R. Sitsapesan et al., J. Physiol. 434, 469(1991)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Bers, Nature 415, 198 (2002)

    Article  ADS  Google Scholar 

  2. R. H. Shutt and S. E. Howlet, Am. J. Physiol. Cell Physiol. 295, C692 (2008).

    Article  Google Scholar 

  3. H. A. Shiels, M. Vornanen, and A. P. Farrell, J. Exp. Biol. 203, 2771 (2000).

    Google Scholar 

  4. T.J. Allen and G. Mikala, Pflugers Arch. 436 (2), 238 (1998).

    Article  Google Scholar 

  5. T. J. Allen, J. Cardiovasc. Electrophysiol. 7 (4), 307 (1996).

    Article  Google Scholar 

  6. C. L. Elias, X. H. Xue, C. R. Marshall, A. Omelchenko, L. V. Hryshko, and G. F. Tibbits, Am. J. Physiol. Cell Physiol. 281, C993 (2001).

    Google Scholar 

  7. R. Sitsapesan, R. A. Montgomery, K. T. MacLeod, and AJ. Williams, J. Physiol. 434, 469 (1991).

    Article  Google Scholar 

  8. D. E. Clapham, Nature 426, 517 (2003).

    Article  ADS  Google Scholar 

  9. D. E. Clapham and C. Miller, Proc. Natl. Acad. Sci. USA. 108 (49), 19492 (2011).

    Article  ADS  Google Scholar 

  10. Filip Van Petegem, J. Biol. Chem. 287 (38), 31624 (2012).

    Article  Google Scholar 

  11. S. Györke and C. Carries, Pharmacol. Ther. 119, 340 (2008).

    Article  Google Scholar 

  12. A. S. Moskvin, M. P. Philipiev, O. E. Solovyova, P. Kohl, and V. S. Markhasin, Dokl. Biochem. Biophys. 400, 32 (2005).

    Article  Google Scholar 

  13. A. S. Moskvin, M. P. Philipiev, O. E. Solovyova, P. Kohl, and V. S. Markhasin, J. Phys. Conf. Ser. 21, 195 (2005)

    Article  ADS  Google Scholar 

  14. A. S. Moskvin, M. P. Philipiev, O. E. Solovyova, P. Kohl, and V. S. Markhasin, Prog. Biophys. Mol. Biol. 90, 88 (2006).

    Article  Google Scholar 

  15. L. A. Irvine, M. S. Jafri, and R. L. Winslow, Biophys. J. 76, 1868 (1999)

    Article  Google Scholar 

  16. A. Jara-Oseguera and L. D. Mas, Biophys. J. 104, 2160 (2013).

    Article  ADS  Google Scholar 

  17. A. S. Moskvin, B. I. Iaparov, A. M. Ryvkin, O. E. Solovyova, V. S. Markhasin, JETP Lett. 102, 62 (2015).

    Article  ADS  Google Scholar 

  18. D. Colquhoun and A. G. Hawkes, Phil. Trans. R. Soc. Lond. B 300, 1 (1982).

    Article  ADS  Google Scholar 

  19. F. Qin, A. Auerbach and F. Sachs, Proc. Biol. Sci. 264 (1380), 375 (1997).

    Article  Google Scholar 

  20. K. Koshino and T. Ogawa, J. Luminesc. 87–89, 642 (2000).

    Article  Google Scholar 

  21. N. Nagaosa and T. Ogawa, Phys. Rev. B 39, 4472 (1989).

    Article  ADS  Google Scholar 

  22. A. S. Moskvin, A. M. Ryvkin, O. E. Solovyova, and V. S. Markhasin, JETP Lett. 93, 403 (2011).

    Article  ADS  Google Scholar 

  23. A.M. Ryvkin, A. S. Moskvin, O. E. Solovyova, and V. S. Markhasin, Dokl. Biol. Sci. 444, 162 (2012).

    Article  Google Scholar 

  24. M. P. Philipiev, Candidate’s Dissertation (Yekaterinburg, 2007).

    Google Scholar 

  25. A. M. Ryvkin, Candidate’s Dissertation (Pushchino, 2014).

    Google Scholar 

  26. A. M. Ryvkin, N. M. Zorin, A. S. Moskvin, O. E. Solovyova, and V. S. Markhasin, Biophysics (Moscow) 60 (6), 946 (2015).

    Article  Google Scholar 

  27. D. Bers, Excitation–Contraction Coupling and Cardiac Contractile Force (Springer Science Business Media, 2001), vol. 237, p. 105.

    Google Scholar 

  28. W. T. Coffey, Yu. P. Kalmykov, and J. T. Waldron, The Langevin Equation. World Scientific Series in Contemporary Chemical Physics, 3rd ed. (2012).

    Google Scholar 

  29. Unlike [16] here we use a common definition of noise term.

  30. A. Ansari, C. Jones, E. Henry, J. Hofrichter, and W. Eaton, Science 256, 1796–1798 (1992).

    Article  ADS  Google Scholar 

  31. S. J. Hagen, Curr. Prot. Pept. Sci. 11, 385–395 (2010).

    Article  ADS  Google Scholar 

  32. H. A. Kramers, Physica (Utrecht) 7, 284 (1940).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Iaparov.

Additional information

Original Russian Text © A.S. Moskvin, B.I. Iaparov, A.M. Ryvkin, O.E. Solovyova, 2016, published in Biofizika, 2016, Vol. 61, No. 4, pp. 726–735.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskvin, A.S., Iaparov, B.I., Ryvkin, A.M. et al. The temperature effect on cardiac ryanodine receptor gating and conductance: Mathematical modeling. BIOPHYSICS 61, 614–621 (2016). https://doi.org/10.1134/S0006350916040175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350916040175

Keywords

Navigation