Skip to main content
Log in

Determining thermo-kinetic constants in order to classify explosivity of foodstuffs

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The kinetics of devolatilization of some foodstuff materials like white wheat flour, sugar, and cocoa powders are studied by using thermogravimetric analysis, in order to measure their pyrolysis rate. The mean pyrolysis rate of these materials is used as a criterion to predict their explosivity. A comparison of the mean pyrolysis rates shows that the sugar powder is the most explosive material among others. Wheat flour explosivity is very close to sugar, and cocoa powder has the least tendency to explode. Our results are completely compatible with National Fire Protection Association reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Proust, “Dust Explosions in Pipes: A Review,” J. Loss Prevent. Process Ind. 9, 267–277 (1996).

    Article  Google Scholar 

  2. National Fire Protection Association (NFPA). Industrial Fire Hazards Handbook (NFPA Inc., 1990).

  3. T. Abbasi and S. A. Abbasi, “Dust Explosions-Cases, Causes, Consequences, and Control,” J. Hazard. Mater. 140, 7–44 (2007).

    Article  Google Scholar 

  4. National Fire Protection Association (NFPA). NFPA 61: Standard for the Prevention of Fires and Dust Explosions in Agricultural and Food Processing Facilities (2013); www.nfpa.org.

  5. M. Bidabadi and A. Rahbari, “Modeling Combustion of Lycopodium Particles by Considering the Temperature Difference between the Gas and the Particles,” Fiz. Goreniya Vzryva 45(3), 49–57 (2009) [Combust., Expl., Shock Wave 45 (3), 278–285 (2009)].

    Google Scholar 

  6. M. Bidabadi, A. Haghiri, and A. Rahbari, “The Effect of Lewis and Damkohler Numbers on the Flame Propagation through Micro-Organic Dust Particles,” Int. J. Therm. Sci. 49, 534–542 (2010).

    Article  Google Scholar 

  7. A. Haghiri and M. Bidabadi, “Modeling of Laminar Flame Propagation through Organic Dust Cloud with Thermal Radiation Effect,” Int. J. Therm. Sci. 49, 1446–1456 (2010).

    Article  Google Scholar 

  8. M. Bidabadi and A. Rahbari, “Novel Analytical Model for Predicting the Combustion Characteristics of Premixed Flame Propagation in Lycopodium Dust Particles,” J. Mech. Sci. Technol. 23, 2417–2423 (2009).

    Article  Google Scholar 

  9. J. Rath and G. Staudinger, “Cracking Reactions of Tar from Pyrolysis of Spruce Wood,” Fuel 80, 1379–1389 (2001).

    Article  Google Scholar 

  10. Q. Dung Tran and C. Rai, “A Kinetic Model for Pyrolysis of Douglas Fir Bark,” Fuel 57, 293–298 (1978).

    Article  Google Scholar 

  11. C. D. Doyle, “Series Approximations to the Equation of Thermogravimetric Data,” Nature 207, 290–291 (1965).

    Article  ADS  Google Scholar 

  12. J. H. Flynn, “The ‘temperature integral’—Its Use and Abuse,” Thermochim. Acta 300, 83–92 (1997).

    Article  Google Scholar 

  13. S. Vyazovkin and C. A. Wight, “Model-Free and Model-Fitting Approaches to Kinetic Analysis of Isothermal and Nonisothermal Data,” Thermochim. Acta 340, 53–89 (1999).

    Article  Google Scholar 

  14. K. Slopiecka, P. Bartocci, and F. Fantozzi, “Thermogravimetric Analysis and Kinetic Study of Poplar Wood Pyrolysis,” Appl. Energy 97, 491–497 (2012).

    Article  Google Scholar 

  15. L. Zhou, Y. Wang, Q. Huang, and J. Cai, “Thermogravimetric Characteristics and Kinetic of Plastic and Biomass Blends Co-Pyrolysis,” Fuel Proces. Technol. 87, 963–969 (2006).

    Article  Google Scholar 

  16. E. Kastanaki, D. Vamvuka, P. Grammelis, and E. Kakaras, “Thermogravimetric Studies of the Ehavior of Lignite-Biomass Blends During Devolatilization,” Fuel Proces. Technol. 77–78, 159–166 (2002).

    Article  Google Scholar 

  17. R. J. Evans and T. A. Milne, “Molecular Characterization of the Pyrolysis of Biomass. 1. Fundaments,” Energy Fuels. 1, 123–137 (1987).

    Article  Google Scholar 

  18. G. Várhegyi, M. J. Antal, T. Szekely, F. Till, and E. Jakab, “Simultaneous Thermogravimetric-mass Spectrometric Studies of the Thermal Decomposition of Biopolymers. 1. Avicel Cellulose in the Presence and Absence of Catalysts,” Energy Fuels 2, 267–272 (1988).

    Article  Google Scholar 

  19. G. Várhegyi, M. J. Antal, T. Szekely, F. Till, and E. Jakab, “Simultaneous Thermogravimetric-mass Spectrometric Studies of the Thermal Decomposition of Biopolymers. 2. Sugar Cane Bagasse in the Presence and Absence of Catalysts,” Energy Fuels 2, 273–277 (1988).

    Article  Google Scholar 

  20. O. S. Han, M. Yashima, T. Matsuda, H. Matsui, A. Miyake, and T. Ogawa, “Behavior of Flames Propagating through Lycopodium Dust Clouds in a Vertical Dust,” J. Loss Prevent. Process Ind. 13, 449–457 (2000).

    Article  Google Scholar 

  21. Z. Zivcova, E. Gregorova, and W. Pabst, “Porous Alumina Ceramics Produced with Lycopodium Spores as Pore-Forming Agents,” J. Mater. Sci. 42, 8760–8764 (2007).

    Article  ADS  Google Scholar 

  22. W. E. Mason and M. J. G. Wilson, “Laminar Flame of Lycopodium Dust in Air,” Combust. Flame 11, 195–200 (1967).

    Article  Google Scholar 

  23. R. K. Eckhoff, Dust Explosions in the Process Industries (Butterworth Heinemann, Oxford, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Beidaghy Dizaji.

Additional information

Original Russian Text © H.Beidaghy Dizaji, F.Faraji Dizaji, and M. Bidabadi.

Published in Fizika Goreniya i Vzryva, Vol. 50, No. 4, pp. 92–101, July–August, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beidaghy Dizaji, H., Faraji Dizaji, F. & Bidabadi, M. Determining thermo-kinetic constants in order to classify explosivity of foodstuffs. Combust Explos Shock Waves 50, 454–462 (2014). https://doi.org/10.1134/S0010508214040145

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508214040145

Keywords

Navigation