Skip to main content
Log in

Thermal explosion in mechanically activated low-calorific-value compositions

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The effect of preliminary mechanical activation of low-calorific-value powdered formulations in a planetary ball mill on the main parameters of the subsequent thermal explosion has been studied. It has been found that in mechanically activated compositions, the initiation temperature of thermal explosion is reduced by hundreds of degrees. The maximum decrease (1300°C) is observed for the Ti + 4 wt.% C system. Regimes of preliminary mechanical activation of reaction mixtures and the subsequent thermal explosion conditions producing Ti3Al and Ni3Al single-phase intermetallic compounds with nanometer grain size were determined. For the 3Ni + Al composition, the energy accumulated during mechanical activation was evaluated. It is shown that the initiation temperature of thermal explosion in the MA compositions studied can be used to estimate the temperature that develops in the mill drums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Rogachev and A. S. Mukas’yan, Combustion for the Synthesis of Materials (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  2. A. P. Amosov, I. P. Borovinskaya, and A. G. Merzhanov, SHS Powder Technology (Mashinostroenie, Moscow 2007) [in Russian].

    Google Scholar 

  3. A. G. Merzhanov, Solid Flame Combustion (Institute of Structural Macrokinetics and Materials Science, Chernogolovka, 2000) [in Russian].

    Google Scholar 

  4. V. Yu. Filimonov, M. A. Korchagin, V. V. Evstigneev, and N. Z. Lyakhov, “Abnormal Decrease in the Activation Energy and Temperature of Initiation of Thermal Explosion in a Mechanically Activated 3Ni–Al Mixture,” Dokl. Akad. Nauk 426 (6), 754–757 (2009).

    Google Scholar 

  5. M. A. Korchagin, V. Yu. Filimonov, E. V. Smirnov, and N. Z. Lyakhov, “Thermal Explosion of a Mechanically Activated 3Ni–Al Mixture,” Fiz. Goreniya Vzryva 46 (1), 48–53 (2010) [Combust., Expl., Shock Waves 46 (1), 41–46 (2010)].

    Google Scholar 

  6. V. Yu. Filimonov, M. A. Korchagin, and N. Z. Lyakhov, “Kinetics of Mechanically Activated High Temperature Synthesis of Ni3Al in the Thermal Explosion Mode,” Intermetallics 19, 833–840 (2011).

    Article  Google Scholar 

  7. V. Yu. Filimonov, M. A. Korchagin, I. A. Ditenberg, A. N. Tyumentsev, N. Z. Lyakhov, “High Temperature Synthesis of Single-Phase Ti3Al Intermetallic Compound in Mechanically Activated Powder Mixture,” Powder Technol. 335, 606–613 (2013).

    Article  Google Scholar 

  8. V. V. Barzykin, “Thermal Explosion in Materials Technology,” Tekhnika Mashinostroeniya, No. 1, 44–52 (2003).

    Google Scholar 

  9. M. A. Korchagin, T. F. Grigor’eva, B. B. Bokhonov, M. P. Sharafutdinov, A. P. Barinova, and N. Z. Lyakhov, “Solid State Combustion in Mechanically Activated SHS Systems. I. Effect of Activation Time on Process Parameters and Combustion Product Composition,” Fiz. Goreniya Vzryva 39 (1), 51–59 (2003) [Combust., Expl., Shock Waves 39 (1), 43–50 (2003)].

    Google Scholar 

  10. M. A. Korchagin, T. F. Grigor’eva, B. B. Bokhonov, M. P. Sharafutdinov, A. P. Barinova, and N. Z. Lyakhov, “Solid State Combustion in Mechanically Activated SHS Systems. II. Effect of Mechanical Activation Conditions on Process Parameters and Combustion Product Composition,” Fiz. Goreniya Vzryva 39 (1), 60–68 (2003) [Combust., Expl., Shock Waves 39 (1), 51–58 (2003)].

    Google Scholar 

  11. V. Yu. Filimonov, M. A. Korchagin, E. V. Smirnov, and N. Z. Lyakhov, “Macrokinetics of Solid-Phase Synthesis of an Activated 3Ni+ Al Mixture in the Thermal Explosion Mode,” Fiz. Goreniya Vzryva 46 (4), 90–98 (2010) [Combust., Expl., Shock Waves 46 (4), 449–456 (2010)].

    Google Scholar 

  12. M. A. Korchagin and N. Z. Lyakhov, “SHS in Mechanically Activated Compositions,” Khim. Fiz. 27 (1), 73–78 (2008).

    Google Scholar 

  13. M. A. Korchagin, V. Yu. Filimonov, E. V. Smirnov, and N. Z. Lyakhov, “Thermal Explosion in Mechanoactivated 3Ni+ Al Mixtures,” Int. J. Self-Propag. High-Temp. Synth. 18 (2), 133–136 (2009).

    Article  Google Scholar 

  14. E. A. Levashov, V. V. Kurbatkina, and K. V. Kolesnichenko, “Effect of Preliminary Mechanical Activation on the Reactivity of Titanium Based SHS Mixtures,” Izv. Vyssh. Uchebn. Zaved., Tsv. Metallurg., No. 6, 61–67 (2000).

    Google Scholar 

  15. A. S. Rogachev, N. A. Kochetov, V. V. Kurbatkina, E. A. Levashov, P. S. Grinchuk, O. S. Rabinovich, N. V. Sachkova, and F. Bernard, “Microstructural Aspects of Gasless Combustion of Mechanically Activated Mixtures. I. High-Speed Microvideorecording of the Ni-Al Composition,” Fiz. Goreniya Vzryva 42 (4), 61–70 (2006) [Combust., Expl., Shock Waves 42 (4), 421–429 (2006)].

    Google Scholar 

  16. M. A. Korchagin and D. V. Dudina, “Application of Self-Propagating High-Temperature Synthesis and Mechanical Activation for Obtaining Nanocomposites,” Fiz. Goreniya Vzryva 43 (2), 58–71 (2007) [Combust., Expl., Shock Waves 43 (2), 176–187 (2007)].

    Google Scholar 

  17. V. Yu. Filimonov, V. V. Evstigneev, D. M. Skakov, and M. A. Korchagin, “Solid-State Interaction in the Mechanically Activated Ti + C + xNi System in the Dynamic Thermal Explosion Regime,” Perspektivnye Materialy, No.4, 79–84 (2009).

    Google Scholar 

  18. M. A. Korchagin and B. B. Bokhonov, “Combustion of Mechanically Activated 3Ti + 2BN Mixtures,” Fiz. Goreniya Vzryva 46 (2), 59–67 (2010) [Combust., Expl., Shock Waves 46 (2), 170–177 (2010)].

    Google Scholar 

  19. E. G. Avvakumov, A. P. Potkin, and O. I. Samarin, “Planetary Mill,” USSR Authors Certificate No. 975068, Byul. Izobr., No. 43 (1982).

  20. E. G. Avakumov, Mechanical Methods of Activation of Chemical Processes (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  21. O. I. Lomovskii and V. V. Boldyrev, Mechanochemistry in Solving Environmental Problems (State Public Scientific Technical Library, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2006) [in Russian].

    Google Scholar 

  22. C. Suryanarayana, “Mechanical Alloying and Milling,” Prog. Mater. Sci. 46, 1–184 (2001).

    Article  Google Scholar 

  23. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials (Akademkniga, Moscow, 2007) [in Russian].

    Google Scholar 

  24. State Diagrams of Binary Metallic Systems: A Reference Book, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1996) [in Russian].

  25. E. A. Levashov, A. S. Rogachev, V. V. Kurbatkina, Yu. M. Maksimov, and V. Yu. Yukhvid, Advanced Materials and Technologies of SHS (Izd. MISiS, Moscow, 2011) [in Russian].

    Google Scholar 

  26. K. N. Egorychev, V. V. Kurbatkina, and E. A. Levashov, “Prospects for the Use of Mechanical Activation of Low-Exothermic Materials for SHS of Composite Materials,” Izv. Vyssh. Uchebn. Zaved., Tsv. Metallurg., No. 6, 49–52 (1996).

    Google Scholar 

  27. H. L. Schick, Thermodynamics of Certain Refractory Compounds (Academic Press, New York–London, 1966), Vol. II.

    Google Scholar 

  28. A. D. Ryabtsev and A. A. Troyan, “Possibility of Obtaining Titanium–Aluminum Alloy by Electroslag Remelting in an Inert Atmosphere under Active Calcium-Containing Fluxes,” Problemy Spets. Electrometallurgii, No. 1, 3–5 (2000).

    Google Scholar 

  29. A. H. Tyumentsev, I. A. Ditenberg, M. A. Pavel, “Effect of Intense Mechanical Action on the Microstructure Parameters of 3Ti+ Al Mechanocomposites,” Fiz. Metal. Metalloved. 111 (2), 195–202 (2011).

    Google Scholar 

  30. G. O. Piloyan, Introduction to Thermal Analysis (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  31. V. I. Itin, Yu. C. Naiborodenko, High-Temperature Synthesis of Intermetallic Compounds (Tomsk State University, Tomsk, 1989) [in Russian].

    Google Scholar 

  32. J. Emsley, The Elements (Oxford, 1989).

    Google Scholar 

  33. A. A. Popovich, Mechanochemical Synthesis of Refractory Compounds (Far Eastern State Technical University, Vladivostok, 2003) [in Russian].

    Google Scholar 

  34. F. Kh. Urakaev, “Theoretical Estimation of Pressure and Temperature Pulses on Particle Friction Contacts in Dispersing Apparatus,” Math. SB RAS, Cer. Chemical. Sciences 7 (3), 5–10 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Korchagin.

Additional information

Original Russian Text © M.A. Korchagin.

Published in Fizika Goreniya i Vzryva, Vol. 51, No. 5, pp. 77–86, September–October, 2015.

Original article submitted April 15, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korchagin, M.A. Thermal explosion in mechanically activated low-calorific-value compositions. Combust Explos Shock Waves 51, 578–586 (2015). https://doi.org/10.1134/S0010508215050093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508215050093

Keywords

Navigation