Skip to main content
Log in

Numerical identification of the leading coefficient of a parabolic equation

  • Numerical Methods
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

For a multidimensional parabolic equation, we study the problem of finding the leading coefficient, which is assumed to depend only on time, on the basis of additional information about the solution at an interior point of the computational domain. For the approximate solution of the nonlinear inverse problem, we construct linearized approximations in time with the use of ordinary finite-element approximations with respect to space. The numerical algorithm is based on a special decomposition of the approximate solution for which the transition to the next time level is carried out by solving two standard elliptic problems. The capabilities of the suggested numerical algorithm are illustrated by the results of numerical solution of a model inverse two-dimensional problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lavrent’ev, M.M., Romanov, V.G., and Shishatskii, S.P., Ill-Posed Problems of Mathematical Physics and Analysis, Providence, 1986.

    Google Scholar 

  2. Alifanov, O.M., Inverse Heat Transfer Problems, Berlin, 2012.

    MATH  Google Scholar 

  3. Prilepko, A.I., Orlovsky, D.G., and Vasin, I.A., Methods for Solving Inverse Problems in Mathematical Physics, New York, 2000.

    MATH  Google Scholar 

  4. Isakov, V., Inverse Problems for Partial Differential Equations, New York, 2006.

    MATH  Google Scholar 

  5. Cannon, J.R., The One-Dimensional Heat Equation, Cambridge, 1984.

    Book  MATH  Google Scholar 

  6. Ivanchov, M., Inverse Problems for Equations of Parabolic Type, Lviv, 2003.

    MATH  Google Scholar 

  7. Cannon, J.R. and Rundell, W., Recovering a Time Dependent Coefficient in a Parabolic Differential Equation, J. Math. Anal. Appl., 1991, vol. 160, pp. 572–582.

    Article  MathSciNet  MATH  Google Scholar 

  8. Yin, H.-M., Solvability of a Class of Parabolic Inverse Problems, Adv. Differential Equations, 1996, vol. 1, pp. 1005–1023.

    MathSciNet  MATH  Google Scholar 

  9. Ivanchov, N.I., On the Determination of the Time-Dependent Leading Coefficient in a Parabolic Equation, Sibirsk. Mat. Zh., 1998, vol. 39, pp. 539–550.

    MathSciNet  MATH  Google Scholar 

  10. Fraguela, A., Infante, J.A., Ramos, A.M., and Rey, J.M., A Uniqueness Result for the Identification of a Time-Dependent Diffusion Coefficient, Inverse Probl., 2013, vol. 29, pp. 125009.

    Article  MathSciNet  MATH  Google Scholar 

  11. Cannon, J.R., Determination of an Unknown Coefficient in a Parabolic Differential Equation, Duke Math. J., 1963, vol. 30, pp. 313–323.

    Article  MathSciNet  MATH  Google Scholar 

  12. Jones, B.F., Various Methods for Finding Unknown Coefficients in Parabolic Differential Equations, Commun. Pure Appl. Math., 1963, vol. 16, pp. 33–44.

    Article  MathSciNet  MATH  Google Scholar 

  13. Cannon, J.R. and Yin, H.-M., Numerical Solutions of Some Parabolic Inverse Problems, Numer. Methods Partial Differential Equations, 1990, vol. 6, pp. 177–191.

    Article  MathSciNet  MATH  Google Scholar 

  14. Dehghan, M., Identification of a Time-Dependent Coefficient in a Partial Differential Equation Subject to an Extra Measurement, Numer. Methods Partial Differential Equations, 2005, vol. 21, pp. 611–622.

    Article  MathSciNet  MATH  Google Scholar 

  15. Liao, W., Dehghan, M., and Mohebbi, A., Direct NumericalMethod for an Inverse Problem of a Parabolic Partial Differential Equation, J. Comput. Appl. Math., 2009, vol. 232, pp. 351–360.

    Article  MathSciNet  MATH  Google Scholar 

  16. Vabishchevich, P.N., Vasil’ev, V.I., and Vasil’eva, M.V., Computational Identification of the Right-Hand Side of a Parabolic Equation, Zh. Vychisl. Mat. Mat. Fiz., 2015, vol. 55, no. 6, pp. 1020–1027.

    MathSciNet  MATH  Google Scholar 

  17. Vabishchevich, P.N. and Vasil’ev, V.I., Computational Algorithms for Solving the Coefficient Inverse Problem for Parabolic Equations, Inverse Probl. Sci. Eng., 2016, vol. 24, pp. 42–59.

    Article  MathSciNet  Google Scholar 

  18. Quarteroni, A. and Valli, A., Numerical Approximation of Partial Differential Equations, Berlin, 2008.

    MATH  Google Scholar 

  19. Brenner, S.C. and Scott, L.R., The Mathematical Theory of Finite Element Method, New York, 2008.

    Book  MATH  Google Scholar 

  20. Samarskii, A.A., The Theory of Difference Schemes, New York, 2001.

    Book  MATH  Google Scholar 

  21. Ascher, U.M., Numerical Methods for Evolutionary Differential Equations, Philadelphia, 2008.

    Book  MATH  Google Scholar 

  22. Samarskii, A.A. and Gulin, A.V., Ustoichivost’ raznostnykh skhem (Stability of Difference Schemes), Moscow, 1973.

    Google Scholar 

  23. Samarskii, A.A., Matus, P.P., and Vabishchevich, P.N., Difference Schemes with Operator Factor, Dordrecht, 2002.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Vabishchevich.

Additional information

Original Russian Text © P.N. Vabishchevich, M.V. Klibanov, 2016, published in Differentsial’nye Uravneniya, 2016, Vol. 52, No. 7, pp. 896–903.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vabishchevich, P.N., Klibanov, M.V. Numerical identification of the leading coefficient of a parabolic equation. Diff Equat 52, 855–862 (2016). https://doi.org/10.1134/S0012266116070053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266116070053

Navigation